UUD-Fusion: An unsupervised universal image fusion approach via generative diffusion model

IF 4.3 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Computer Vision and Image Understanding Pub Date : 2024-11-06 DOI:10.1016/j.cviu.2024.104218
Xiangxiang Wang , Lixing Fang , Junli Zhao , Zhenkuan Pan , Hui Li , Yi Li
{"title":"UUD-Fusion: An unsupervised universal image fusion approach via generative diffusion model","authors":"Xiangxiang Wang ,&nbsp;Lixing Fang ,&nbsp;Junli Zhao ,&nbsp;Zhenkuan Pan ,&nbsp;Hui Li ,&nbsp;Yi Li","doi":"10.1016/j.cviu.2024.104218","DOIUrl":null,"url":null,"abstract":"<div><div>Image fusion is a classical problem in the field of image processing whose solutions are usually not unique. The common image fusion methods can only generate a fixed fusion result based on the source image pairs. They tend to be applicable only to a specific task and have high computational costs. Hence, in this paper, a two-stage unsupervised universal image fusion with generative diffusion model is proposed, termed as UUD-Fusion. For the first stage, a strategy based on the initial fusion results is devised to offload the computational effort. For the second stage, two novel sampling algorithms based on generative diffusion model are designed. The fusion sequence generation algorithm (FSGA) searches for a series of solutions in the solution space by iterative sampling. The fusion image enhancement algorithm (FIEA) greatly improves the quality of the fused images. Qualitative and quantitative evaluations of multiple datasets with different modalities demonstrate the great versatility and effectiveness of UUD-Fusion. It is capable of solving different fusion problems, including multi-focus image fusion task, multi-exposure image fusion task, infrared and visible fusion task, and medical image fusion task. The proposed approach is superior to current state-of-the-art methods. Our code is publicly available at <span><span>https://github.com/xiangxiang-wang/UUD-Fusion</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":50633,"journal":{"name":"Computer Vision and Image Understanding","volume":"249 ","pages":"Article 104218"},"PeriodicalIF":4.3000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Vision and Image Understanding","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1077314224002996","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Image fusion is a classical problem in the field of image processing whose solutions are usually not unique. The common image fusion methods can only generate a fixed fusion result based on the source image pairs. They tend to be applicable only to a specific task and have high computational costs. Hence, in this paper, a two-stage unsupervised universal image fusion with generative diffusion model is proposed, termed as UUD-Fusion. For the first stage, a strategy based on the initial fusion results is devised to offload the computational effort. For the second stage, two novel sampling algorithms based on generative diffusion model are designed. The fusion sequence generation algorithm (FSGA) searches for a series of solutions in the solution space by iterative sampling. The fusion image enhancement algorithm (FIEA) greatly improves the quality of the fused images. Qualitative and quantitative evaluations of multiple datasets with different modalities demonstrate the great versatility and effectiveness of UUD-Fusion. It is capable of solving different fusion problems, including multi-focus image fusion task, multi-exposure image fusion task, infrared and visible fusion task, and medical image fusion task. The proposed approach is superior to current state-of-the-art methods. Our code is publicly available at https://github.com/xiangxiang-wang/UUD-Fusion.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
UUD-Fusion:通过生成扩散模型实现无监督通用图像融合方法
图像融合是图像处理领域的一个经典问题,其解决方案通常不是唯一的。常见的图像融合方法只能根据源图像对生成固定的融合结果。这些方法往往只适用于特定的任务,而且计算成本较高。因此,本文提出了一种具有生成扩散模型的两阶段无监督通用图像融合方法,称为 UUD-Fusion。在第一阶段,设计了一种基于初始融合结果的策略,以减轻计算工作量。在第二阶段,设计了两种基于生成扩散模型的新型采样算法。融合序列生成算法(FSGA)通过迭代采样在解空间中搜索一系列解。融合图像增强算法(FIEA)大大提高了融合图像的质量。对不同模式的多个数据集进行的定性和定量评估表明,UUD-Fusion 具有强大的通用性和有效性。它能够解决不同的融合问题,包括多焦点图像融合任务、多曝光图像融合任务、红外和可见光融合任务以及医学图像融合任务。所提出的方法优于目前最先进的方法。我们的代码可在 https://github.com/xiangxiang-wang/UUD-Fusion 公开获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computer Vision and Image Understanding
Computer Vision and Image Understanding 工程技术-工程:电子与电气
CiteScore
7.80
自引率
4.40%
发文量
112
审稿时长
79 days
期刊介绍: The central focus of this journal is the computer analysis of pictorial information. Computer Vision and Image Understanding publishes papers covering all aspects of image analysis from the low-level, iconic processes of early vision to the high-level, symbolic processes of recognition and interpretation. A wide range of topics in the image understanding area is covered, including papers offering insights that differ from predominant views. Research Areas Include: • Theory • Early vision • Data structures and representations • Shape • Range • Motion • Matching and recognition • Architecture and languages • Vision systems
期刊最新文献
Scene-cGAN: A GAN for underwater restoration and scene depth estimation 2S-SGCN: A two-stage stratified graph convolutional network model for facial landmark detection on 3D data Dual stage semantic information based generative adversarial network for image super-resolution Enhancing scene text detectors with realistic text image synthesis using diffusion models Unsupervised co-generation of foreground–background segmentation from Text-to-Image synthesis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1