A comprehensive study of beam modal functions in the free vibration analysis of cylindrical shells: Critical examination on the applicability to the clamped-free boundary condition
{"title":"A comprehensive study of beam modal functions in the free vibration analysis of cylindrical shells: Critical examination on the applicability to the clamped-free boundary condition","authors":"Ganghui Xu, Changsheng Zhu","doi":"10.1016/j.tws.2024.112674","DOIUrl":null,"url":null,"abstract":"<div><div>Over the past few decades, approximate methods that can provide solutions of sufficient accuracy have received considerable attention in the free vibration analysis of cylindrical shells, where a great deal of studies adopted the beam modal functions as the trial functions for the axial mode shapes of cylindrical shells. Nevertheless, most studies were restricted to the application of single term beam modal function and failed to simulate elastic boundary conditions of cylindrical shells, while the accuracy of the corresponding methods has recently sparked significant controversy, especially for cylindrical shells under the clamped-free boundary condition. This paper presents a comparative study of three forms of beam modal functions in the free vibration analysis of cylindrical shells, one of which is proposed for the first time to simulate elastic boundary conditions of cylindrical shells. A unified model is developed using the general Rayleigh–Ritz method, incorporating the breathing modes with circumferential orders being zero, and four types of commonly used thin shell theories, namely the Donnell, Reissner, Love, and Sanders theories. From both perspectives of natural frequencies and mode shapes, numerical results are validated by comparison with those existing in the literature and those calculated from the finite element method (FEM). The results not only clarify the distinction of different forms of beam modal functions used in the Rayleigh-Ritz method, but also provide explanations for the controversy raised in recent studies. Furthermore, the unified formulations can be extended to vibration analysis of various forms of shell structures, and can also be helpful to the vibration analysis of beams and plates with elastic boundary conditions.</div></div>","PeriodicalId":49435,"journal":{"name":"Thin-Walled Structures","volume":"206 ","pages":"Article 112674"},"PeriodicalIF":5.7000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thin-Walled Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263823124011145","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
Over the past few decades, approximate methods that can provide solutions of sufficient accuracy have received considerable attention in the free vibration analysis of cylindrical shells, where a great deal of studies adopted the beam modal functions as the trial functions for the axial mode shapes of cylindrical shells. Nevertheless, most studies were restricted to the application of single term beam modal function and failed to simulate elastic boundary conditions of cylindrical shells, while the accuracy of the corresponding methods has recently sparked significant controversy, especially for cylindrical shells under the clamped-free boundary condition. This paper presents a comparative study of three forms of beam modal functions in the free vibration analysis of cylindrical shells, one of which is proposed for the first time to simulate elastic boundary conditions of cylindrical shells. A unified model is developed using the general Rayleigh–Ritz method, incorporating the breathing modes with circumferential orders being zero, and four types of commonly used thin shell theories, namely the Donnell, Reissner, Love, and Sanders theories. From both perspectives of natural frequencies and mode shapes, numerical results are validated by comparison with those existing in the literature and those calculated from the finite element method (FEM). The results not only clarify the distinction of different forms of beam modal functions used in the Rayleigh-Ritz method, but also provide explanations for the controversy raised in recent studies. Furthermore, the unified formulations can be extended to vibration analysis of various forms of shell structures, and can also be helpful to the vibration analysis of beams and plates with elastic boundary conditions.
期刊介绍:
Thin-walled structures comprises an important and growing proportion of engineering construction with areas of application becoming increasingly diverse, ranging from aircraft, bridges, ships and oil rigs to storage vessels, industrial buildings and warehouses.
Many factors, including cost and weight economy, new materials and processes and the growth of powerful methods of analysis have contributed to this growth, and led to the need for a journal which concentrates specifically on structures in which problems arise due to the thinness of the walls. This field includes cold– formed sections, plate and shell structures, reinforced plastics structures and aluminium structures, and is of importance in many branches of engineering.
The primary criterion for consideration of papers in Thin–Walled Structures is that they must be concerned with thin–walled structures or the basic problems inherent in thin–walled structures. Provided this criterion is satisfied no restriction is placed on the type of construction, material or field of application. Papers on theory, experiment, design, etc., are published and it is expected that many papers will contain aspects of all three.