Spectral management and current matching optimization for high-efficiency perovskite-CIGS-SnS triple junction tandem solar cells

IF 2.1 4区 物理与天体物理 Q3 PHYSICS, CONDENSED MATTER Solid State Communications Pub Date : 2024-11-12 DOI:10.1016/j.ssc.2024.115754
Shivani Gohri, Jaya Madan, Rahul Pandey
{"title":"Spectral management and current matching optimization for high-efficiency perovskite-CIGS-SnS triple junction tandem solar cells","authors":"Shivani Gohri,&nbsp;Jaya Madan,&nbsp;Rahul Pandey","doi":"10.1016/j.ssc.2024.115754","DOIUrl":null,"url":null,"abstract":"<div><div>Low-cost materials are used in this work to make a triple-junction tandem solar cell (TSC). Two-step filtered spectrum and current matching techniques are used to design a perovskite-CIGS-SnS based TSC using a SCAPS-1D simulator. To design a TSC, the top cell (TC) is illuminated with a 1.5AM spectrum, and the unabsorbed spectrum of the TC is utilized for the middle cell (MC). Similarly, the unabsorbed spectrum of the MC is used to illuminate the bottom cell (BC). Additional merits of this work: the perovskite used is a two-dimensional Dion Jacobson (DJ) perovskite, which is more stable than conventional perovskites. The results show that current matching is obtained at active layer thickness (nm) of 365/600/100 for TC/MC/BC, respectively. The proposed solar cell shows a remarkable PV performance of 3.25 V V<sub>OC</sub>, 9.42 mA/cm<sup>2</sup> J<sub>SC</sub>, 79.3 % FF and 24.27 % PCE.</div></div>","PeriodicalId":430,"journal":{"name":"Solid State Communications","volume":"395 ","pages":"Article 115754"},"PeriodicalIF":2.1000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid State Communications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038109824003314","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

Low-cost materials are used in this work to make a triple-junction tandem solar cell (TSC). Two-step filtered spectrum and current matching techniques are used to design a perovskite-CIGS-SnS based TSC using a SCAPS-1D simulator. To design a TSC, the top cell (TC) is illuminated with a 1.5AM spectrum, and the unabsorbed spectrum of the TC is utilized for the middle cell (MC). Similarly, the unabsorbed spectrum of the MC is used to illuminate the bottom cell (BC). Additional merits of this work: the perovskite used is a two-dimensional Dion Jacobson (DJ) perovskite, which is more stable than conventional perovskites. The results show that current matching is obtained at active layer thickness (nm) of 365/600/100 for TC/MC/BC, respectively. The proposed solar cell shows a remarkable PV performance of 3.25 V VOC, 9.42 mA/cm2 JSC, 79.3 % FF and 24.27 % PCE.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高效率过氧化物-CIGS-SnS 三结串联太阳能电池的光谱管理和电流匹配优化
本研究使用低成本材料制造三结串联太阳能电池(TSC)。利用 SCAPS-1D 模拟器,采用两步滤波光谱和电流匹配技术设计了一种基于包晶-CIGS-SnS 的 TSC。为设计 TSC,顶部电池 (TC) 采用 1.5AM 光谱照明,中间电池 (MC) 则采用 TC 的未吸收光谱。同样,MC 的未吸收光谱用于照亮底部电池 (BC)。这项工作的其他优点:所使用的过氧化物是二维 Dion Jacobson (DJ) 过氧化物,比传统过氧化物更稳定。结果表明,TC/MC/BC 的有源层厚度(纳米)分别为 365/600/100 时,可实现电流匹配。所提出的太阳能电池具有显著的光伏性能:3.25 V VOC、9.42 mA/cm2 JSC、79.3 % FF 和 24.27 % PCE。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Solid State Communications
Solid State Communications 物理-物理:凝聚态物理
CiteScore
3.40
自引率
4.80%
发文量
287
审稿时长
51 days
期刊介绍: Solid State Communications is an international medium for the publication of short communications and original research articles on significant developments in condensed matter science, giving scientists immediate access to important, recently completed work. The journal publishes original experimental and theoretical research on the physical and chemical properties of solids and other condensed systems and also on their preparation. The submission of manuscripts reporting research on the basic physics of materials science and devices, as well as of state-of-the-art microstructures and nanostructures, is encouraged. A coherent quantitative treatment emphasizing new physics is expected rather than a simple accumulation of experimental data. Consistent with these aims, the short communications should be kept concise and short, usually not longer than six printed pages. The number of figures and tables should also be kept to a minimum. Solid State Communications now also welcomes original research articles without length restrictions. The Fast-Track section of Solid State Communications is the venue for very rapid publication of short communications on significant developments in condensed matter science. The goal is to offer the broad condensed matter community quick and immediate access to publish recently completed papers in research areas that are rapidly evolving and in which there are developments with great potential impact.
期刊最新文献
Tailoring structural, morphological, and magnetic properties of Sr0.54Ca0.46Fe6.5-xNixAl5.5O19 hexaferrites via Ni substitution Tuning band gap and improving optoelectronic properties of lead-free halide perovskites FrMI3 (M = Ge, Sn) under hydrostatic pressure The theoretical investigation of the electronic and optical properties of Fe-doped anatase TiO2 Chemical and structural features of spin-coated magnesium oxide (MgO) and its impact on the barrier parameters and current conduction process of Au/undoped-InP Schottky contact as an interfacial layer High pressure and high temperature synthesis of a new boron carbide phase
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1