{"title":"A homogenization model for multiple buckling response of axially compressed cellular cylindrical shells","authors":"Fangle Qi, Linghui He, Yong Ni","doi":"10.1016/j.tws.2024.112637","DOIUrl":null,"url":null,"abstract":"<div><div>Pattern transformation in periodic cellular structures induces significant property changes under specific external stimuli, resulting in unusual mechanical behavior. This paper proposes an efficient homogenization method for predicting multiple buckling responses of cellular cylindrical shells composed of such pattern-transformation metamaterial. FEM simulations reveal four distinct buckling modes and three kinds of post-buckling processes, achieved through controlled adjustments in the ratio of cylindrical shell thickness to the radius and structural porosity. An efficient homogenization method with the local buckling in the cellular cylindrical shell modeled as an equivalent plasticity in the homogenized shell enables us to predict the critical buckling stress and the post-buckling morphology in good agreement with FEM simulations, analytical analysis, and experiments. The derived solution for the critical buckling load of the cellular cylindrical shells provides practical insights for designing and applying such cylindrical cellular structures.</div></div>","PeriodicalId":49435,"journal":{"name":"Thin-Walled Structures","volume":"206 ","pages":"Article 112637"},"PeriodicalIF":5.7000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thin-Walled Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263823124010772","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
Pattern transformation in periodic cellular structures induces significant property changes under specific external stimuli, resulting in unusual mechanical behavior. This paper proposes an efficient homogenization method for predicting multiple buckling responses of cellular cylindrical shells composed of such pattern-transformation metamaterial. FEM simulations reveal four distinct buckling modes and three kinds of post-buckling processes, achieved through controlled adjustments in the ratio of cylindrical shell thickness to the radius and structural porosity. An efficient homogenization method with the local buckling in the cellular cylindrical shell modeled as an equivalent plasticity in the homogenized shell enables us to predict the critical buckling stress and the post-buckling morphology in good agreement with FEM simulations, analytical analysis, and experiments. The derived solution for the critical buckling load of the cellular cylindrical shells provides practical insights for designing and applying such cylindrical cellular structures.
期刊介绍:
Thin-walled structures comprises an important and growing proportion of engineering construction with areas of application becoming increasingly diverse, ranging from aircraft, bridges, ships and oil rigs to storage vessels, industrial buildings and warehouses.
Many factors, including cost and weight economy, new materials and processes and the growth of powerful methods of analysis have contributed to this growth, and led to the need for a journal which concentrates specifically on structures in which problems arise due to the thinness of the walls. This field includes cold– formed sections, plate and shell structures, reinforced plastics structures and aluminium structures, and is of importance in many branches of engineering.
The primary criterion for consideration of papers in Thin–Walled Structures is that they must be concerned with thin–walled structures or the basic problems inherent in thin–walled structures. Provided this criterion is satisfied no restriction is placed on the type of construction, material or field of application. Papers on theory, experiment, design, etc., are published and it is expected that many papers will contain aspects of all three.