A wideband damage source localization method using enhanced virtual time reversal mirror technique and modal analysis with sparse acoustic emission array

IF 3.4 2区 物理与天体物理 Q1 ACOUSTICS Applied Acoustics Pub Date : 2024-11-15 DOI:10.1016/j.apacoust.2024.110405
Kangwei Wang, Yang Qian, Jie Xie, Jun Wang, Weiguo Huang
{"title":"A wideband damage source localization method using enhanced virtual time reversal mirror technique and modal analysis with sparse acoustic emission array","authors":"Kangwei Wang,&nbsp;Yang Qian,&nbsp;Jie Xie,&nbsp;Jun Wang,&nbsp;Weiguo Huang","doi":"10.1016/j.apacoust.2024.110405","DOIUrl":null,"url":null,"abstract":"<div><div>In order to reduce the possibility of damage or leakages in the pressure vessels, acoustic emission (AE) array is typically utilized in the structural health monitoring (SHM) and integrity assessment in view of its high sensitivity. However, accurately analyzing and localizing a wideband AE source in practice can be challenging due to the complex dispersion and multi-mode behavior of AE signals. In this study, an enhanced virtual time reversal mirror (VTRM) imaging method was proposed aiming to solve this situation. This method was comprised of Morlet wavelet transform, time reversal mirror technique and a multi-window energy ratio indicator, which can be used to reconstruct ultrasonic images and reveal the damage locations. The proposed method was testified on a steel plate, using standard Hsu-Nielsen source localization experiments with many different source locations and array layout configurations, hence guaranteeing its reliability and repeatability. In contrast with time difference of arrival and single-sensor model acoustic emission methods, it was validated to eliminate the noise disturbances and echo interferences, significantly reducing the risk of artifacts and obtaining a much higher stability and noise resistance than the compared methods. In conclusion, the feasibility of the proposed method in complex AE source localization has been sufficiently confirmed, and it has the potential to be further studied in more practical SHM applications in the future.</div></div>","PeriodicalId":55506,"journal":{"name":"Applied Acoustics","volume":"229 ","pages":"Article 110405"},"PeriodicalIF":3.4000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Acoustics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0003682X24005565","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

Abstract

In order to reduce the possibility of damage or leakages in the pressure vessels, acoustic emission (AE) array is typically utilized in the structural health monitoring (SHM) and integrity assessment in view of its high sensitivity. However, accurately analyzing and localizing a wideband AE source in practice can be challenging due to the complex dispersion and multi-mode behavior of AE signals. In this study, an enhanced virtual time reversal mirror (VTRM) imaging method was proposed aiming to solve this situation. This method was comprised of Morlet wavelet transform, time reversal mirror technique and a multi-window energy ratio indicator, which can be used to reconstruct ultrasonic images and reveal the damage locations. The proposed method was testified on a steel plate, using standard Hsu-Nielsen source localization experiments with many different source locations and array layout configurations, hence guaranteeing its reliability and repeatability. In contrast with time difference of arrival and single-sensor model acoustic emission methods, it was validated to eliminate the noise disturbances and echo interferences, significantly reducing the risk of artifacts and obtaining a much higher stability and noise resistance than the compared methods. In conclusion, the feasibility of the proposed method in complex AE source localization has been sufficiently confirmed, and it has the potential to be further studied in more practical SHM applications in the future.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用增强型虚拟时间反转镜技术和稀疏声发射阵列模态分析的宽带损伤源定位方法
为了降低压力容器损坏或泄漏的可能性,声发射(AE)阵列因其高灵敏度通常被用于结构健康监测(SHM)和完整性评估。然而,由于声发射信号的复杂弥散和多模行为,在实践中准确分析和定位宽带声发射源可能具有挑战性。本研究提出了一种增强型虚拟时间反转镜(VTRM)成像方法,旨在解决这一问题。该方法由 Morlet 小波变换、时间反转镜技术和多窗口能量比指标组成,可用于重建超声波图像并揭示损伤位置。利用标准的 Hsu-Nielsen 声源定位实验在钢板上对所提出的方法进行了验证,实验中使用了多种不同的声源位置和阵列布局配置,从而保证了该方法的可靠性和可重复性。与到达时差法和单传感器模型声发射法相比,该方法经验证可消除噪声干扰和回声干扰,大大降低了产生伪影的风险,其稳定性和抗噪性也远高于同类方法。总之,所提方法在复杂声发射源定位中的可行性已得到充分证实,未来有可能在更多实际的 SHM 应用中得到进一步研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Acoustics
Applied Acoustics 物理-声学
CiteScore
7.40
自引率
11.80%
发文量
618
审稿时长
7.5 months
期刊介绍: Since its launch in 1968, Applied Acoustics has been publishing high quality research papers providing state-of-the-art coverage of research findings for engineers and scientists involved in applications of acoustics in the widest sense. Applied Acoustics looks not only at recent developments in the understanding of acoustics but also at ways of exploiting that understanding. The Journal aims to encourage the exchange of practical experience through publication and in so doing creates a fund of technological information that can be used for solving related problems. The presentation of information in graphical or tabular form is especially encouraged. If a report of a mathematical development is a necessary part of a paper it is important to ensure that it is there only as an integral part of a practical solution to a problem and is supported by data. Applied Acoustics encourages the exchange of practical experience in the following ways: • Complete Papers • Short Technical Notes • Review Articles; and thereby provides a wealth of technological information that can be used to solve related problems. Manuscripts that address all fields of applications of acoustics ranging from medicine and NDT to the environment and buildings are welcome.
期刊最新文献
Development of a code-switched Hindi-Marathi dataset and transformer-based architecture for enhanced speech recognition using dynamic switching algorithms Eco-design of airborne sound insulation in Recycled Lightweight Concrete walls for Brazilian social housing: A reliability-based approach Does loudspeaker directivity really influence the reconstructed indoor temperature quality using Acoustic travel-time TOMography? A new deep learning forward BSS (D-FBSS) algorithm for acoustic noise reduction and speech enhancement Source depth classification in shallow sea negative thermocline waveguide with small aperture vertical arrays
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1