{"title":"Network-based resilience assessment of an urban rail transit infrastructure with a multi-dimensional performance metric","authors":"Mingchang Zhu , Xiaoqing Zeng , Peiran Ying , Lixia Bao","doi":"10.1016/j.physa.2024.130211","DOIUrl":null,"url":null,"abstract":"<div><div>With urban and public transportation development, the urban rail transit networks (URTN) become increasingly complex, evolving into multi-layer and intricate systems. The operating environment is complex, and the rising frequency of emergencies significantly impacts the entire network. Consequently, the resilient ability of URTN to deal with risk attacks has become an important research field. In this paper, a bilayer URTN model is constructed, encompassing urban and suburban rail transit, proposing the adjacency matrix and the coupling mechanism of subnetworks. Then, the performance of a URTN jointly considering network efficiency, network structure entropy, and the number of trips per unit time is addressed. By considering passenger travel alternatives under disruptions, we develop an improved Logit stochastic user equilibrium (SUE) passenger assignment model based on generalized travel time costs, introducing the failure degree of the stations, to predict passenger flow paths. A multi-dimensional resilience assessment model is proposed using the resilience change curve for attack scenarios and recovery strategies, and a comprehensive network performance system through the AHP method to determine the weight coefficients of indicators. Finally, we present a case study based on the Shanghai URT network to explore the resilience of URTN in the morning peak and simulate the network resilience under different failure scenarios. The results indicate that the proposed model can assess the resilience of the Shanghai MRTN under random and malicious failure, and the former has less comprehensive performance losses and greater resilience. Additionally, the sensitivity analysis is conducted to explore the impact of the number of failed stations, the failure degree of stations, and recovery ability on network resilience. This study provides theoretical support for urban managers and builders regarding network structure and emergency management, and offers relevant suggestions.</div></div>","PeriodicalId":20152,"journal":{"name":"Physica A: Statistical Mechanics and its Applications","volume":"656 ","pages":"Article 130211"},"PeriodicalIF":2.8000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica A: Statistical Mechanics and its Applications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378437124007209","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
With urban and public transportation development, the urban rail transit networks (URTN) become increasingly complex, evolving into multi-layer and intricate systems. The operating environment is complex, and the rising frequency of emergencies significantly impacts the entire network. Consequently, the resilient ability of URTN to deal with risk attacks has become an important research field. In this paper, a bilayer URTN model is constructed, encompassing urban and suburban rail transit, proposing the adjacency matrix and the coupling mechanism of subnetworks. Then, the performance of a URTN jointly considering network efficiency, network structure entropy, and the number of trips per unit time is addressed. By considering passenger travel alternatives under disruptions, we develop an improved Logit stochastic user equilibrium (SUE) passenger assignment model based on generalized travel time costs, introducing the failure degree of the stations, to predict passenger flow paths. A multi-dimensional resilience assessment model is proposed using the resilience change curve for attack scenarios and recovery strategies, and a comprehensive network performance system through the AHP method to determine the weight coefficients of indicators. Finally, we present a case study based on the Shanghai URT network to explore the resilience of URTN in the morning peak and simulate the network resilience under different failure scenarios. The results indicate that the proposed model can assess the resilience of the Shanghai MRTN under random and malicious failure, and the former has less comprehensive performance losses and greater resilience. Additionally, the sensitivity analysis is conducted to explore the impact of the number of failed stations, the failure degree of stations, and recovery ability on network resilience. This study provides theoretical support for urban managers and builders regarding network structure and emergency management, and offers relevant suggestions.
期刊介绍:
Physica A: Statistical Mechanics and its Applications
Recognized by the European Physical Society
Physica A publishes research in the field of statistical mechanics and its applications.
Statistical mechanics sets out to explain the behaviour of macroscopic systems by studying the statistical properties of their microscopic constituents.
Applications of the techniques of statistical mechanics are widespread, and include: applications to physical systems such as solids, liquids and gases; applications to chemical and biological systems (colloids, interfaces, complex fluids, polymers and biopolymers, cell physics); and other interdisciplinary applications to for instance biological, economical and sociological systems.