Fatigue Crack Propagation Life of Metallic Materials Under Random Loading: A Coupling Analysis Method in the Frequency Domain

IF 3.1 2区 材料科学 Q2 ENGINEERING, MECHANICAL Fatigue & Fracture of Engineering Materials & Structures Pub Date : 2024-10-01 DOI:10.1111/ffe.14455
Dingkun Fu, Piao Li, Jiachen Sun, Weixing Yao
{"title":"Fatigue Crack Propagation Life of Metallic Materials Under Random Loading: A Coupling Analysis Method in the Frequency Domain","authors":"Dingkun Fu,&nbsp;Piao Li,&nbsp;Jiachen Sun,&nbsp;Weixing Yao","doi":"10.1111/ffe.14455","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>This paper proposes an equivalent spectrum method to predict the fatigue crack propagation (FCP) life of metallic materials subjected to random loading. To adequately account for the coupling effects between crack propagation and the random response of structures, a coupling analysis model is introduced. The stress intensity factor (SIF) can be estimated based on the power spectral density (PSD) of an equivalent displacement. Random vibration fatigue tests were conducted to evaluate the proposed model on aluminum alloy specimens. Results indicate significant variations in natural frequency with crack length. The predicted results are compared with the experimental values, demonstrating satisfactory prediction accuracy of the proposed coupling analysis model. This model enables the assessment of coupling effects between crack length and random response, facilitating more precise predictions of FCP life in metallic materials and guiding the expanded application of damage tolerance criteria in structural engineering.</p>\n </div>","PeriodicalId":12298,"journal":{"name":"Fatigue & Fracture of Engineering Materials & Structures","volume":"47 12","pages":"4650-4659"},"PeriodicalIF":3.1000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fatigue & Fracture of Engineering Materials & Structures","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ffe.14455","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes an equivalent spectrum method to predict the fatigue crack propagation (FCP) life of metallic materials subjected to random loading. To adequately account for the coupling effects between crack propagation and the random response of structures, a coupling analysis model is introduced. The stress intensity factor (SIF) can be estimated based on the power spectral density (PSD) of an equivalent displacement. Random vibration fatigue tests were conducted to evaluate the proposed model on aluminum alloy specimens. Results indicate significant variations in natural frequency with crack length. The predicted results are compared with the experimental values, demonstrating satisfactory prediction accuracy of the proposed coupling analysis model. This model enables the assessment of coupling effects between crack length and random response, facilitating more precise predictions of FCP life in metallic materials and guiding the expanded application of damage tolerance criteria in structural engineering.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
随机载荷下金属材料的疲劳裂纹扩展寿命:频域耦合分析方法
本文提出了一种等效谱方法,用于预测金属材料在随机载荷作用下的疲劳裂纹扩展(FCP)寿命。为了充分考虑裂纹扩展与结构随机响应之间的耦合效应,本文引入了一个耦合分析模型。应力强度因子(SIF)可根据等效位移的功率谱密度(PSD)进行估算。在铝合金试样上进行了随机振动疲劳试验,以评估所提出的模型。结果表明,固有频率随裂纹长度变化很大。预测结果与实验值进行了比较,证明所提出的耦合分析模型的预测精度令人满意。该模型能够评估裂纹长度与随机响应之间的耦合效应,有助于更精确地预测金属材料的 FCP 寿命,并指导结构工程中损伤容限标准的扩展应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.30
自引率
18.90%
发文量
256
审稿时长
4 months
期刊介绍: Fatigue & Fracture of Engineering Materials & Structures (FFEMS) encompasses the broad topic of structural integrity which is founded on the mechanics of fatigue and fracture, and is concerned with the reliability and effectiveness of various materials and structural components of any scale or geometry. The editors publish original contributions that will stimulate the intellectual innovation that generates elegant, effective and economic engineering designs. The journal is interdisciplinary and includes papers from scientists and engineers in the fields of materials science, mechanics, physics, chemistry, etc.
期刊最新文献
Issue Information Issue Information Fatigue Design Curves for Industrial Applications: A Review A High Load Clipping Criterion Based on the Probabilistic Extreme Load of Fatigue Spectrum The Dual Role of Nb Microalloying on the High-Cycle Fatigue of 1.0%C–1.5%Cr Bearing Steel
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1