A Bibliometric Exploration of Multiple Criteria Decision Aid and Clustering—A Conceptual Taxonomy

IF 1.9 Q3 MANAGEMENT Journal of Multi-Criteria Decision Analysis Pub Date : 2024-11-12 DOI:10.1002/mcda.1839
Pavlos Delias, Michalis Doumpos
{"title":"A Bibliometric Exploration of Multiple Criteria Decision Aid and Clustering—A Conceptual Taxonomy","authors":"Pavlos Delias,&nbsp;Michalis Doumpos","doi":"10.1002/mcda.1839","DOIUrl":null,"url":null,"abstract":"<p>This work explores the intersection of Multiple Criteria Decision Aid (MCDA) and clustering techniques, revealing unexploited potential and novel perspectives arising from their integration, challenging their conventional separation. It serves as a compass, guiding researchers through a bibliometric exploration and a conceptual taxonomy consolidating existing knowledge. Employing a two-fold methodology, we first sketch the field's contours through a bibliometric lens, uncovering its intellectual structure, thematic landscape, and social dynamics. Then, using science mapping techniques like co-word analysis, historiography, and collaboration network analysis, we examine patterns, revealing an interconnected mosaic of concepts. Our findings unveil a natural grouping into three categories: (1) Mixed-yet-not-integrated approaches, explores sequential applications—clustering followed by MCDA or vice versa—where one method precedes and informs the other. (2) ‘Relational/ordered clustering’ leveraging criteria dependency to refine structures. (3) Using MCDA to improve clustering mechanics through similarity metrics, domain knowledge incorporation, and robustness. We conclusively propose a taxonomy along three axes: Units of Analysis, Instrumentalisation, and Objective. The key takeaway emphasises the collaborative potential of MCDA, envisioning a landscape where the integration of MCDA and clustering not only enhances existing methodologies but also spawns innovative paradigms, fostering a symbiotic relationship that transcends conventional boundaries.</p>","PeriodicalId":45876,"journal":{"name":"Journal of Multi-Criteria Decision Analysis","volume":"31 5-6","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mcda.1839","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Multi-Criteria Decision Analysis","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mcda.1839","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MANAGEMENT","Score":null,"Total":0}
引用次数: 0

Abstract

This work explores the intersection of Multiple Criteria Decision Aid (MCDA) and clustering techniques, revealing unexploited potential and novel perspectives arising from their integration, challenging their conventional separation. It serves as a compass, guiding researchers through a bibliometric exploration and a conceptual taxonomy consolidating existing knowledge. Employing a two-fold methodology, we first sketch the field's contours through a bibliometric lens, uncovering its intellectual structure, thematic landscape, and social dynamics. Then, using science mapping techniques like co-word analysis, historiography, and collaboration network analysis, we examine patterns, revealing an interconnected mosaic of concepts. Our findings unveil a natural grouping into three categories: (1) Mixed-yet-not-integrated approaches, explores sequential applications—clustering followed by MCDA or vice versa—where one method precedes and informs the other. (2) ‘Relational/ordered clustering’ leveraging criteria dependency to refine structures. (3) Using MCDA to improve clustering mechanics through similarity metrics, domain knowledge incorporation, and robustness. We conclusively propose a taxonomy along three axes: Units of Analysis, Instrumentalisation, and Objective. The key takeaway emphasises the collaborative potential of MCDA, envisioning a landscape where the integration of MCDA and clustering not only enhances existing methodologies but also spawns innovative paradigms, fostering a symbiotic relationship that transcends conventional boundaries.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多重标准决策辅助工具和聚类的文献计量学探索--概念分类学
这项工作探索了多重标准决策辅助工具(MCDA)和聚类技术的交叉点,揭示了两者结合产生的尚未开发的潜力和新视角,对两者的传统分离提出了挑战。它就像一个指南针,引导研究人员进行文献计量学探索和概念分类学研究,巩固现有知识。我们采用双重方法,首先通过文献计量学的视角勾勒出该领域的轮廓,揭示其知识结构、主题景观和社会动态。然后,我们利用科学图谱技术,如共同词分析、历史学和协作网络分析,研究各种模式,揭示概念之间的相互联系。我们的研究结果揭示了一个自然分组,分为三类:(1) 混合但未整合的方法,探索了先聚类后 MCDA 或反之亦然的顺序应用,其中一种方法先于另一种方法,并为另一种方法提供信息。(2) "关系/有序聚类 "利用标准依赖性来完善结构。(3) 利用 MCDA,通过相似性度量、领域知识融入和稳健性来改进聚类机制。我们沿着三个轴线提出了一个分类法:分析单位、工具化和目标。我们的主要启示是强调 MCDA 的协作潜力,设想 MCDA 与聚类的整合不仅能增强现有方法,还能催生创新范例,促进超越传统界限的共生关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.70
自引率
10.00%
发文量
14
期刊介绍: The Journal of Multi-Criteria Decision Analysis was launched in 1992, and from the outset has aimed to be the repository of choice for papers covering all aspects of MCDA/MCDM. The journal provides an international forum for the presentation and discussion of all aspects of research, application and evaluation of multi-criteria decision analysis, and publishes material from a variety of disciplines and all schools of thought. Papers addressing mathematical, theoretical, and behavioural aspects are welcome, as are case studies, applications and evaluation of techniques and methodologies.
期刊最新文献
Issue Information A Bibliometric Exploration of Multiple Criteria Decision Aid and Clustering—A Conceptual Taxonomy Monitoring Sustainable Development Goals: Stepwise Benchmarking Approach Charting the evolutionary conceptual pathway of analytic network process research: A main path analysis Socio-economic strategy for settlement of refugees amidst crisis: The case of Pak-Afghan
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1