High-Performance Textile-Based Capacitive Strain Sensors via Enhanced Vapor Phase Polymerization of Pyrrole and Their Application to Machine Learning-Assisted Hand Gesture Recognition

IF 6.8 Q1 AUTOMATION & CONTROL SYSTEMS Advanced intelligent systems (Weinheim an der Bergstrasse, Germany) Pub Date : 2024-11-17 DOI:10.1002/aisy.202470050
Pierre Kateb, Alice Fornaciari, Chakaveh Ahmadizadeh, Alexander Shokurov, Fabio Cicoira, Carlo Menon
{"title":"High-Performance Textile-Based Capacitive Strain Sensors via Enhanced Vapor Phase Polymerization of Pyrrole and Their Application to Machine Learning-Assisted Hand Gesture Recognition","authors":"Pierre Kateb,&nbsp;Alice Fornaciari,&nbsp;Chakaveh Ahmadizadeh,&nbsp;Alexander Shokurov,&nbsp;Fabio Cicoira,&nbsp;Carlo Menon","doi":"10.1002/aisy.202470050","DOIUrl":null,"url":null,"abstract":"<p><b>High-Performance Textile-Based Capacitive Strain Sensors</b>\n </p><p>In article number 2400292, Alexander Shokurov, Carlo Menon, and co-workers present high-performance textile-based capacitive strain sensors for wearable applications. Through vapor-phase polymerization of pyrrole, enhanced via addition of co-vapor and imidazole, good conductivity and robustness are achieved in a stretchable textile. A new insulation technique using polymer composites provides durability and dielectric coating. Intertwining such fibers together creates a stretchable capacitive sensor. Integrated into a textile glove, sensors precisely capture fine hand motions. A machine learning model classifies 12 gestures with 100% accuracy, showcasing its potential for wearable technology.\n\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":93858,"journal":{"name":"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)","volume":"6 11","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aisy.202470050","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aisy.202470050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

High-Performance Textile-Based Capacitive Strain Sensors

In article number 2400292, Alexander Shokurov, Carlo Menon, and co-workers present high-performance textile-based capacitive strain sensors for wearable applications. Through vapor-phase polymerization of pyrrole, enhanced via addition of co-vapor and imidazole, good conductivity and robustness are achieved in a stretchable textile. A new insulation technique using polymer composites provides durability and dielectric coating. Intertwining such fibers together creates a stretchable capacitive sensor. Integrated into a textile glove, sensors precisely capture fine hand motions. A machine learning model classifies 12 gestures with 100% accuracy, showcasing its potential for wearable technology.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过增强吡咯气相聚合的高性能纺织品电容式应变传感器及其在机器学习辅助手势识别中的应用
基于纺织品的高性能电容式应变传感器 在编号为 2400292 的文章中,Alexander Shokurov、Carlo Menon 及其合作者介绍了用于可穿戴应用的高性能纺织品电容式应变传感器。通过对吡咯进行气相聚合,并加入共蒸物和咪唑进行增强,在可拉伸纺织品中实现了良好的导电性和坚固性。使用聚合物复合材料的新型绝缘技术可提供耐用性和电介质涂层。将这些纤维交织在一起,就形成了一种可拉伸的电容式传感器。传感器集成到纺织手套中,可精确捕捉手部的细微动作。机器学习模型对 12 种手势进行了分类,准确率达到 100%,展示了其在可穿戴技术方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
0
审稿时长
4 weeks
期刊最新文献
Masthead A Flexible, Architected Soft Robotic Actuator for Motorized Extensional Motion Design and Optimization of a Magnetic Field Generator for Magnetic Particle Imaging with Soft Magnetic Materials High-Performance Textile-Based Capacitive Strain Sensors via Enhanced Vapor Phase Polymerization of Pyrrole and Their Application to Machine Learning-Assisted Hand Gesture Recognition Optimized Magnetically Docked Ingestible Capsules for Non-Invasive Refilling of Implantable Devices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1