High Resolution Köppen-Geiger Climate Zones of Türkiye

IF 3.5 3区 地球科学 Q2 METEOROLOGY & ATMOSPHERIC SCIENCES International Journal of Climatology Pub Date : 2024-09-25 DOI:10.1002/joc.8635
Enes Taşoğlu, Muhammed Zeynel Öztürk, Öznur Yazıcı
{"title":"High Resolution Köppen-Geiger Climate Zones of Türkiye","authors":"Enes Taşoğlu,&nbsp;Muhammed Zeynel Öztürk,&nbsp;Öznur Yazıcı","doi":"10.1002/joc.8635","DOIUrl":null,"url":null,"abstract":"<p>The Köppen-Geiger (K-G) climate classification is the most commonly used climate classification method in the world, and there are many K-G climate classification studies focusing on Türkiye using different datasets. However, the differences in the datasets used in these studies lead to substantial differences and errors in K-G climate zone maps. The differences and disagreements in these maps also cause significant discrepancies in climate studies. In this respect, accurate identification of climate classes and types is very important for understanding the distribution of climate types and for many climate-based studies to achieve accurate results. In this study, the K-G climate types of Türkiye and the regime characteristics of these climate types were determined using the CHELSA dataset corrected based on the measurements of 337 meteorological stations. According to the results that were obtained, 14 climate types were identified in Türkiye. Since the CHELSA dataset reflected topographic conditions well, many microclimates were identified within broad areas of climate types. The distribution of the microclimate types was compared to the distribution of the vegetation, and the accuracy of the results was evaluated. Apart from microclimates, other prominent features of this study were the co-occurrence of multiple climate types in a limited area in the Eastern Black Sea Region and the detection of the EF climate type for the first time at the summit of Mount Ararat. Climate types vary according to altitude conditions, and temperature changes due to altitude are an important factor in the formation of climate sub-types within the same main climate type in Türkiye.</p>","PeriodicalId":13779,"journal":{"name":"International Journal of Climatology","volume":"44 14","pages":"5248-5265"},"PeriodicalIF":3.5000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/joc.8635","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Climatology","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/joc.8635","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The Köppen-Geiger (K-G) climate classification is the most commonly used climate classification method in the world, and there are many K-G climate classification studies focusing on Türkiye using different datasets. However, the differences in the datasets used in these studies lead to substantial differences and errors in K-G climate zone maps. The differences and disagreements in these maps also cause significant discrepancies in climate studies. In this respect, accurate identification of climate classes and types is very important for understanding the distribution of climate types and for many climate-based studies to achieve accurate results. In this study, the K-G climate types of Türkiye and the regime characteristics of these climate types were determined using the CHELSA dataset corrected based on the measurements of 337 meteorological stations. According to the results that were obtained, 14 climate types were identified in Türkiye. Since the CHELSA dataset reflected topographic conditions well, many microclimates were identified within broad areas of climate types. The distribution of the microclimate types was compared to the distribution of the vegetation, and the accuracy of the results was evaluated. Apart from microclimates, other prominent features of this study were the co-occurrence of multiple climate types in a limited area in the Eastern Black Sea Region and the detection of the EF climate type for the first time at the summit of Mount Ararat. Climate types vary according to altitude conditions, and temperature changes due to altitude are an important factor in the formation of climate sub-types within the same main climate type in Türkiye.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
土耳其高分辨率柯本-盖革气候区
Köppen-Geiger (K-G) 气候分类法是世界上最常用的气候分类方法,有许多 K-G 气候分类研究使用不同的数据集对土耳其进行了研究。然而,由于这些研究中使用的数据集不同,导致 K-G 气候区划图存在很大差异和误差。这些地图上的差异和分歧也导致了气候研究中的重大差异。因此,准确识别气候等级和类型对于了解气候类型的分布以及许多基于气候的研究取得准确结果非常重要。在这项研究中,根据 337 个气象站的测量结果,利用经过校正的 CHELSA 数据集确定了土耳其的 K-G 气候类型以及这些气候类型的制度特征。根据得出的结果,确定了土耳其的 14 种气候类型。由于 CHELSA 数据集很好地反映了地形条件,因此在气候类型的广泛区域内确定了许多小气候。小气候类型的分布与植被的分布进行了比较,并对结果的准确性进行了评估。除小气候外,本研究的其他突出特点还包括在黑海东部地区的有限区域内同时出现多种气候类型,以及首次在阿拉拉特山顶发现 EF 气候类型。气候类型因海拔条件而异,海拔导致的温度变化是在图尔基耶同一主要气候类型中形成气候子类型的重要因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Climatology
International Journal of Climatology 地学-气象与大气科学
CiteScore
7.50
自引率
7.70%
发文量
417
审稿时长
4 months
期刊介绍: The International Journal of Climatology aims to span the well established but rapidly growing field of climatology, through the publication of research papers, short communications, major reviews of progress and reviews of new books and reports in the area of climate science. The Journal’s main role is to stimulate and report research in climatology, from the expansive fields of the atmospheric, biophysical, engineering and social sciences. Coverage includes: Climate system science; Local to global scale climate observations and modelling; Seasonal to interannual climate prediction; Climatic variability and climate change; Synoptic, dynamic and urban climatology, hydroclimatology, human bioclimatology, ecoclimatology, dendroclimatology, palaeoclimatology, marine climatology and atmosphere-ocean interactions; Application of climatological knowledge to environmental assessment and management and economic production; Climate and society interactions
期刊最新文献
Issue Information Issue Information Hydrologic Responses to Climate Change and Implications for Reservoirs in the Source Region of the Yangtze River Tropical cyclone landfalls in the Northwest Pacific under global warming Evaluation and projection of changes in temperature and precipitation over Northwest China based on CMIP6 models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1