Iridium Photoredox-Catalyzed Stereoselective C-Glycosylation with Tetrafluoropyridin-4-yl Thioglycosides: A Facile Synthesis of C-α/β-Glucogallins and Their Antioxidant Activity
Shenghao Li, Han Ding, Ruge Cao, Xiao-Lin Zhang, Jingxin Li, Xingchun Sun, Yaying Li, Kan Zhong, Peng Wang, Chao Cai, Hongzhi Cao, Ming Li, Xue-Wei Liu
{"title":"Iridium Photoredox-Catalyzed Stereoselective C-Glycosylation with Tetrafluoropyridin-4-yl Thioglycosides: A Facile Synthesis of C-α/β-Glucogallins and Their Antioxidant Activity","authors":"Shenghao Li, Han Ding, Ruge Cao, Xiao-Lin Zhang, Jingxin Li, Xingchun Sun, Yaying Li, Kan Zhong, Peng Wang, Chao Cai, Hongzhi Cao, Ming Li, Xue-Wei Liu","doi":"10.1021/acscatal.4c05257","DOIUrl":null,"url":null,"abstract":"We demonstrate an efficient, scalable, and stereoselective <i>C</i>-glycosylation with thioglycosides possessing a unique photoactive tetrafluoropyridin-4-yl (TFPy) thio radical leaving group, affording editable and medicinally and biologically essential <i>C</i>-α-glucogallin derivatives. In the presence of silyl enol ether acceptors, the desulfurative coupling reaction performs smoothly under mild conditions upon exposure to blue light irradiation. This versatile protocol permits the synthesis of sugar-drug chimeras by <i>C</i>1 ketonylation of complex drug-derived silyl enol ethers. The scale-up synthesis, anomeric epimerization, and post-<i>C</i>-glycosylation modification of ketone sugars showcase the reaction’s potential utilities. Furthermore, the reaction could be applied to direct carbohydrate skeleton editing by equipping the leaving group on the nonanomeric position. The ketonylation is viable for unprotected TFPy thioglycoside, affording a direct route to unprotected ketonyl sugars. The concise six-step assembly of both configurated <i>C</i>-glucogallins from commercially cheap glucose pentaacetate and their antioxidant reactivity investigations underline the promising medicinal relevance of our current protocols. The reaction mechanism was investigated through a radical trapping experiment, an oxocarbenium trapping experiment, a fluorescence quenching experiment, and Stern–Volmer analysis, confirming that the major glycosyl radical intermediates are generated from the thioglycoside donors, whose tetrafluoropyridin-4-yl thio group could effectively quench the fluorescence of excited Ir(ppy)<sub>3</sub> through an oxidative quenching process, and <i>C</i>-glycosylation with oxocarbenium is a complementary route to the product, accounting for examples with moderate selectivities.","PeriodicalId":9,"journal":{"name":"ACS Catalysis ","volume":"15 1","pages":""},"PeriodicalIF":11.3000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Catalysis ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acscatal.4c05257","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
We demonstrate an efficient, scalable, and stereoselective C-glycosylation with thioglycosides possessing a unique photoactive tetrafluoropyridin-4-yl (TFPy) thio radical leaving group, affording editable and medicinally and biologically essential C-α-glucogallin derivatives. In the presence of silyl enol ether acceptors, the desulfurative coupling reaction performs smoothly under mild conditions upon exposure to blue light irradiation. This versatile protocol permits the synthesis of sugar-drug chimeras by C1 ketonylation of complex drug-derived silyl enol ethers. The scale-up synthesis, anomeric epimerization, and post-C-glycosylation modification of ketone sugars showcase the reaction’s potential utilities. Furthermore, the reaction could be applied to direct carbohydrate skeleton editing by equipping the leaving group on the nonanomeric position. The ketonylation is viable for unprotected TFPy thioglycoside, affording a direct route to unprotected ketonyl sugars. The concise six-step assembly of both configurated C-glucogallins from commercially cheap glucose pentaacetate and their antioxidant reactivity investigations underline the promising medicinal relevance of our current protocols. The reaction mechanism was investigated through a radical trapping experiment, an oxocarbenium trapping experiment, a fluorescence quenching experiment, and Stern–Volmer analysis, confirming that the major glycosyl radical intermediates are generated from the thioglycoside donors, whose tetrafluoropyridin-4-yl thio group could effectively quench the fluorescence of excited Ir(ppy)3 through an oxidative quenching process, and C-glycosylation with oxocarbenium is a complementary route to the product, accounting for examples with moderate selectivities.
期刊介绍:
ACS Catalysis is an esteemed journal that publishes original research in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. It offers broad coverage across diverse areas such as life sciences, organometallics and synthesis, photochemistry and electrochemistry, drug discovery and synthesis, materials science, environmental protection, polymer discovery and synthesis, and energy and fuels.
The scope of the journal is to showcase innovative work in various aspects of catalysis. This includes new reactions and novel synthetic approaches utilizing known catalysts, the discovery or modification of new catalysts, elucidation of catalytic mechanisms through cutting-edge investigations, practical enhancements of existing processes, as well as conceptual advances in the field. Contributions to ACS Catalysis can encompass both experimental and theoretical research focused on catalytic molecules, macromolecules, and materials that exhibit catalytic turnover.