Alberto Maria Gambelli, Monica Brienza, Giovanni Gigliotti
{"title":"Glucose removal from water mixtures at concentrations ranging from 40 to 0.15 w/w%, via CO2 hydrates formation and separated melting","authors":"Alberto Maria Gambelli, Monica Brienza, Giovanni Gigliotti","doi":"10.1016/j.ces.2024.120936","DOIUrl":null,"url":null,"abstract":"Similarly to ice, gas hydrates can be used to purify water from contaminants. The removal efficiency depends of several parameters, such as the chemical composition of the contaminant, its geometry and size, its charge and others. The process was tested for water mixtures containing glucose at different concentrations, ranging from 40 to 0.15 w/w%. To process meaningful quantities of water, the production of hydrates must be abundant. Therefore, CO<sub>2</sub> hydrates were formed at seven different concentrations within the previously mentioned range. Only the concentrations corresponding to the best performances were selected to carry out experiments finalized at defining the removal efficiency of the process. For this second scope, hydrates were formed again, separated from the remaining liquid phase and then melted. The obtained water was analysed and the concentration of glucose measured. The comparison between the initial and the final concentrations, allowed to define the overall feasibility of the process.","PeriodicalId":271,"journal":{"name":"Chemical Engineering Science","volume":"62 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.ces.2024.120936","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Similarly to ice, gas hydrates can be used to purify water from contaminants. The removal efficiency depends of several parameters, such as the chemical composition of the contaminant, its geometry and size, its charge and others. The process was tested for water mixtures containing glucose at different concentrations, ranging from 40 to 0.15 w/w%. To process meaningful quantities of water, the production of hydrates must be abundant. Therefore, CO2 hydrates were formed at seven different concentrations within the previously mentioned range. Only the concentrations corresponding to the best performances were selected to carry out experiments finalized at defining the removal efficiency of the process. For this second scope, hydrates were formed again, separated from the remaining liquid phase and then melted. The obtained water was analysed and the concentration of glucose measured. The comparison between the initial and the final concentrations, allowed to define the overall feasibility of the process.
期刊介绍:
Chemical engineering enables the transformation of natural resources and energy into useful products for society. It draws on and applies natural sciences, mathematics and economics, and has developed fundamental engineering science that underpins the discipline.
Chemical Engineering Science (CES) has been publishing papers on the fundamentals of chemical engineering since 1951. CES is the platform where the most significant advances in the discipline have ever since been published. Chemical Engineering Science has accompanied and sustained chemical engineering through its development into the vibrant and broad scientific discipline it is today.