Paolo Manghi, Amrisha Bhosle, Kai Wang, Roberta Marconi, Marta Selma-Royo, Liviana Ricci, Francesco Asnicar, Davide Golzato, Wenjie Ma, Dong Hang, Kelsey N. Thompson, Eric A. Franzosa, Amir Nabinejad, Sabrina Tamburini, Eric B. Rimm, Wendy S. Garrett, Qi Sun, Andrew T. Chan, Mireia Valles-Colomer, Manimozhiyan Arumugam, Kate M. Bermingham, Francesca Giordano, Richard Davies, George Hadjigeorgiou, Jonathan Wolf, Till Strowig, Sarah E. Berry, Curtis Huttenhower, Tim D. Spector, Nicola Segata, Mingyang Song
{"title":"Coffee consumption is associated with intestinal Lawsonibacter asaccharolyticus abundance and prevalence across multiple cohorts","authors":"Paolo Manghi, Amrisha Bhosle, Kai Wang, Roberta Marconi, Marta Selma-Royo, Liviana Ricci, Francesco Asnicar, Davide Golzato, Wenjie Ma, Dong Hang, Kelsey N. Thompson, Eric A. Franzosa, Amir Nabinejad, Sabrina Tamburini, Eric B. Rimm, Wendy S. Garrett, Qi Sun, Andrew T. Chan, Mireia Valles-Colomer, Manimozhiyan Arumugam, Kate M. Bermingham, Francesca Giordano, Richard Davies, George Hadjigeorgiou, Jonathan Wolf, Till Strowig, Sarah E. Berry, Curtis Huttenhower, Tim D. Spector, Nicola Segata, Mingyang Song","doi":"10.1038/s41564-024-01858-9","DOIUrl":null,"url":null,"abstract":"<p>Although diet is a substantial determinant of the human gut microbiome, the interplay between specific foods and microbial community structure remains poorly understood. Coffee is a habitually consumed beverage with established metabolic and health benefits. We previously found that coffee is, among >150 items, the food showing the highest correlation with microbiome components. Here we conducted a multi-cohort, multi-omic analysis of US and UK populations with detailed dietary information from a total of 22,867 participants, which we then integrated with public data from 211 cohorts (<i>N</i> = 54,198). The link between coffee consumption and microbiome was highly reproducible across different populations (area under the curve of 0.89), largely driven by the presence and abundance of the species <i>Lawsonibacter asaccharolyticus</i>. Using in vitro experiments, we show that coffee can stimulate growth of <i>L.</i> <i>asaccharolyticus</i>. Plasma metabolomics on 438 samples identified several metabolites enriched among coffee consumers, with quinic acid and its potential derivatives associated with coffee and <i>L.</i> <i>asaccharolyticus</i>. This study reveals a metabolic link between a specific gut microorganism and a specific food item, providing a framework for the understanding of microbial dietary responses at the biochemical level.</p>","PeriodicalId":18992,"journal":{"name":"Nature Microbiology","volume":"50 1","pages":""},"PeriodicalIF":20.5000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41564-024-01858-9","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Although diet is a substantial determinant of the human gut microbiome, the interplay between specific foods and microbial community structure remains poorly understood. Coffee is a habitually consumed beverage with established metabolic and health benefits. We previously found that coffee is, among >150 items, the food showing the highest correlation with microbiome components. Here we conducted a multi-cohort, multi-omic analysis of US and UK populations with detailed dietary information from a total of 22,867 participants, which we then integrated with public data from 211 cohorts (N = 54,198). The link between coffee consumption and microbiome was highly reproducible across different populations (area under the curve of 0.89), largely driven by the presence and abundance of the species Lawsonibacter asaccharolyticus. Using in vitro experiments, we show that coffee can stimulate growth of L.asaccharolyticus. Plasma metabolomics on 438 samples identified several metabolites enriched among coffee consumers, with quinic acid and its potential derivatives associated with coffee and L.asaccharolyticus. This study reveals a metabolic link between a specific gut microorganism and a specific food item, providing a framework for the understanding of microbial dietary responses at the biochemical level.
期刊介绍:
Nature Microbiology aims to cover a comprehensive range of topics related to microorganisms. This includes:
Evolution: The journal is interested in exploring the evolutionary aspects of microorganisms. This may include research on their genetic diversity, adaptation, and speciation over time.
Physiology and cell biology: Nature Microbiology seeks to understand the functions and characteristics of microorganisms at the cellular and physiological levels. This may involve studying their metabolism, growth patterns, and cellular processes.
Interactions: The journal focuses on the interactions microorganisms have with each other, as well as their interactions with hosts or the environment. This encompasses investigations into microbial communities, symbiotic relationships, and microbial responses to different environments.
Societal significance: Nature Microbiology recognizes the societal impact of microorganisms and welcomes studies that explore their practical applications. This may include research on microbial diseases, biotechnology, or environmental remediation.
In summary, Nature Microbiology is interested in research related to the evolution, physiology and cell biology of microorganisms, their interactions, and their societal relevance.