{"title":"Assembly-Controlled Supramolecular Aggregation-Induced Emission Systems based on Amphiphilic Block Polymer Hosts","authors":"Yu-Qi Zhu, Zhong-Yuan Chen, Zhi-Wei Zhou, Zhao-Jun Chen, Ming-Xue Wu, Xing-Huo Wang","doi":"10.1039/d4py01009d","DOIUrl":null,"url":null,"abstract":"Fabrication of controlled supramolecular assembly and establishing the structure-function relationship was of great significance in supramolecular chemistry. Uniform fluorescence supramolecular polymeric vesicles and/or micelles with enhanced photophysical property were elaborately designed and prepared by amphiphilic block polymer hosts bearing pillar[5]arene units, which following the working mechanism of synergistically confined effect of hydrophobic interactions and host-guest interactions. Additionally, transformation from supramolecular polymeric vesicles to supramolecular polymeric micelles was achieved by selecting different length of hydrophilic segments in block polymer hosts. The optical performance was detailed deciphered by the impact factors including guest patterns, density of pillar[5]arene unit, length of hydrophilic segments and solvent environment. By exploiting amphiphilic block polymer hosts, efficient artificial light-harvesting systems with ordered arrangement of donor and acceptor molecules were well constructed to realize tunable emission wavelength, which was used as Morse code for information encryption matrix with high storage capacity capable of simultaneously storing Chinese, English and digits.","PeriodicalId":100,"journal":{"name":"Polymer Chemistry","volume":"50 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4py01009d","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Fabrication of controlled supramolecular assembly and establishing the structure-function relationship was of great significance in supramolecular chemistry. Uniform fluorescence supramolecular polymeric vesicles and/or micelles with enhanced photophysical property were elaborately designed and prepared by amphiphilic block polymer hosts bearing pillar[5]arene units, which following the working mechanism of synergistically confined effect of hydrophobic interactions and host-guest interactions. Additionally, transformation from supramolecular polymeric vesicles to supramolecular polymeric micelles was achieved by selecting different length of hydrophilic segments in block polymer hosts. The optical performance was detailed deciphered by the impact factors including guest patterns, density of pillar[5]arene unit, length of hydrophilic segments and solvent environment. By exploiting amphiphilic block polymer hosts, efficient artificial light-harvesting systems with ordered arrangement of donor and acceptor molecules were well constructed to realize tunable emission wavelength, which was used as Morse code for information encryption matrix with high storage capacity capable of simultaneously storing Chinese, English and digits.
期刊介绍:
Polymer Chemistry welcomes submissions in all areas of polymer science that have a strong focus on macromolecular chemistry. Manuscripts may cover a broad range of fields, yet no direct application focus is required.