Effect of ultrasonic vibration on fatigue life of Inconel 718 machined by high-speed milling: Physics-enhanced machine learning approach

IF 7.9 1区 工程技术 Q1 ENGINEERING, MECHANICAL Mechanical Systems and Signal Processing Pub Date : 2024-11-07 DOI:10.1016/j.ymssp.2024.112115
Reza Teimouri, Marcin Grabowski
{"title":"Effect of ultrasonic vibration on fatigue life of Inconel 718 machined by high-speed milling: Physics-enhanced machine learning approach","authors":"Reza Teimouri, Marcin Grabowski","doi":"10.1016/j.ymssp.2024.112115","DOIUrl":null,"url":null,"abstract":"Ultrasonic assisted high-speed machining (UAHSM) can be served as a thermomechanical surface sever plastic deformation (SSPD), because of the high-frequency impact load exerting to the sample together with thermomechanical loads due to shearing and plowing. Despite existing of few works which studied the impact of ultrasonic vibration on fatigue life assessment of difficult-to-cut material by experimental approach, they couldn’t provide an in-depth analysis to identify the underlying mechanisms of fatigue due time-consuming and costly fatigue life tests. Hence, elucidating the role of ultrasonic vibration in UAHSM on variation of fatigue life needs further studies. In order to do so, in the present work, a hybrid predictive approach based using ANFIS-based machine learning model and micromechanical Navaro-Rios (NR) fatigue crack propagation model has been introduced to directly correlates the UAHSM’s parameters to fatigue life. Here the former correlates feed rate, cutting velocity and vibration amplitude as process inputs, to surface integrity aspects (SIA) viz residual stress, roughness and grain size as output. Then, the modeled SIA are correlated to fatigue life using the former. The introduced hybrid model was then verified through series of UAHSM by examining the fatigue lives of milled Inconel 718 using four-point bending fatigue tests. Upon confirmation of the developed model, a comprehensive study was carried out to find how the process factors impact variation of SIA and subsequently fatigue. It was found from the results of developed models and confirmatory experiments that the role of ultrasonic vibration on improved fatigue life is mainly due to inducing compressive residual stress and more refined microstructure than the roughness.","PeriodicalId":51124,"journal":{"name":"Mechanical Systems and Signal Processing","volume":"53 1","pages":""},"PeriodicalIF":7.9000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanical Systems and Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.ymssp.2024.112115","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Ultrasonic assisted high-speed machining (UAHSM) can be served as a thermomechanical surface sever plastic deformation (SSPD), because of the high-frequency impact load exerting to the sample together with thermomechanical loads due to shearing and plowing. Despite existing of few works which studied the impact of ultrasonic vibration on fatigue life assessment of difficult-to-cut material by experimental approach, they couldn’t provide an in-depth analysis to identify the underlying mechanisms of fatigue due time-consuming and costly fatigue life tests. Hence, elucidating the role of ultrasonic vibration in UAHSM on variation of fatigue life needs further studies. In order to do so, in the present work, a hybrid predictive approach based using ANFIS-based machine learning model and micromechanical Navaro-Rios (NR) fatigue crack propagation model has been introduced to directly correlates the UAHSM’s parameters to fatigue life. Here the former correlates feed rate, cutting velocity and vibration amplitude as process inputs, to surface integrity aspects (SIA) viz residual stress, roughness and grain size as output. Then, the modeled SIA are correlated to fatigue life using the former. The introduced hybrid model was then verified through series of UAHSM by examining the fatigue lives of milled Inconel 718 using four-point bending fatigue tests. Upon confirmation of the developed model, a comprehensive study was carried out to find how the process factors impact variation of SIA and subsequently fatigue. It was found from the results of developed models and confirmatory experiments that the role of ultrasonic vibration on improved fatigue life is mainly due to inducing compressive residual stress and more refined microstructure than the roughness.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
超声波振动对高速铣削加工的 Inconel 718 的疲劳寿命的影响:物理增强型机器学习方法
超声波辅助高速加工(UAHSM)可作为一种热机械表面断裂塑性变形(SSPD),因为它对试样施加了高频冲击载荷以及剪切和犁耕产生的热机械载荷。尽管已有少数研究通过实验方法研究了超声波振动对难切割材料疲劳寿命评估的影响,但由于疲劳寿命测试耗时且成本高昂,这些研究无法提供深入分析以确定疲劳的内在机制。因此,阐明超声振动在 UAHSM 中对疲劳寿命变化的作用还需要进一步研究。为此,本研究采用基于 ANFIS 的机器学习模型和微机械纳瓦罗-里奥斯(NR)疲劳裂纹扩展模型的混合预测方法,直接将 UAHSM 的参数与疲劳寿命相关联。前者将进给率、切削速度和振动振幅作为工艺输入,将表面完整性(SIA),即残余应力、粗糙度和晶粒度作为输出。然后,利用前者将建模的 SIA 与疲劳寿命相关联。然后,通过一系列 UAHSM,利用四点弯曲疲劳试验对铣削过的 Inconel 718 的疲劳寿命进行检验,从而验证了所引入的混合模型。在确认所开发的模型后,又进行了一项综合研究,以了解工艺因素如何影响 SIA 的变化以及随后的疲劳。从开发的模型和确认实验的结果中发现,超声波振动对提高疲劳寿命的作用主要是诱导压缩残余应力和更精细的微观结构,而不是粗糙度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Mechanical Systems and Signal Processing
Mechanical Systems and Signal Processing 工程技术-工程:机械
CiteScore
14.80
自引率
13.10%
发文量
1183
审稿时长
5.4 months
期刊介绍: Journal Name: Mechanical Systems and Signal Processing (MSSP) Interdisciplinary Focus: Mechanical, Aerospace, and Civil Engineering Purpose:Reporting scientific advancements of the highest quality Arising from new techniques in sensing, instrumentation, signal processing, modelling, and control of dynamic systems
期刊最新文献
A two-stage correction method for UAV movement-induced errors in non-target computer vision-based displacement measurement Outlier-resistant guided wave dispersion curve recovery and measurement placement optimization base on multitask complex hierarchical sparse Bayesian learning Multifaceted vibration absorption of a rotating magnetic nonlinear energy sink A novel microwave-based dynamic measurement method for blade tip clearance through nonlinear I/Q imbalance correction Shrinkage mamba relation network with out-of-distribution data augmentation for rotating machinery fault detection and localization under zero-faulty data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1