Michelle Sophie Lemcke, Dr. Stefan Loos, Dr. Nadine Menzel, Prof. Dr. Michael Bron
{"title":"Elucidating the Performance Limitations of a 25 cm2 Pure-Water-Fed Non-Precious Metal Anion Exchange Membrane Electrolyzer Cell","authors":"Michelle Sophie Lemcke, Dr. Stefan Loos, Dr. Nadine Menzel, Prof. Dr. Michael Bron","doi":"10.1002/celc.202400334","DOIUrl":null,"url":null,"abstract":"<p>Anion exchange membrane (AEM) water electrolysis has emerged as a promising technology for producing hydrogen in a carbon-neutral economy. To advance its industrial application, performance evaluations of non-precious metal AEM electrolyzers with electrode areas of 25 cm<sup>2</sup> were conducted. The focus was on pure water operation, achieving a current density of 0.26 A cm<sup>−2</sup> at a voltage of 2.2 V. To gain a better understanding, the AEM electrolyzer was also operated in aqueous KOH, yielding 1.2 A cm<sup>−2</sup> at 2.2 V. By adding a liquid electrolyte and by varying cell components, causes of the occurring performance limitations and ways to improve the AEM electrolyzer were identified. Electrochemical impedance analysis showed that the activation loss at the anode due to sluggish OER kinetics was the limiting factor at low current densities. At higher current densities, which is the operating range of interest for industrial application, the ohmic resistance from the membrane was the dominant factor limiting high performance in pure water operation.</p>","PeriodicalId":142,"journal":{"name":"ChemElectroChem","volume":"11 21","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/celc.202400334","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemElectroChem","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/celc.202400334","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0
Abstract
Anion exchange membrane (AEM) water electrolysis has emerged as a promising technology for producing hydrogen in a carbon-neutral economy. To advance its industrial application, performance evaluations of non-precious metal AEM electrolyzers with electrode areas of 25 cm2 were conducted. The focus was on pure water operation, achieving a current density of 0.26 A cm−2 at a voltage of 2.2 V. To gain a better understanding, the AEM electrolyzer was also operated in aqueous KOH, yielding 1.2 A cm−2 at 2.2 V. By adding a liquid electrolyte and by varying cell components, causes of the occurring performance limitations and ways to improve the AEM electrolyzer were identified. Electrochemical impedance analysis showed that the activation loss at the anode due to sluggish OER kinetics was the limiting factor at low current densities. At higher current densities, which is the operating range of interest for industrial application, the ohmic resistance from the membrane was the dominant factor limiting high performance in pure water operation.
期刊介绍:
ChemElectroChem is aimed to become a top-ranking electrochemistry journal for primary research papers and critical secondary information from authors across the world. The journal covers the entire scope of pure and applied electrochemistry, the latter encompassing (among others) energy applications, electrochemistry at interfaces (including surfaces), photoelectrochemistry and bioelectrochemistry.