Halogen Radical-Activated Perovskite-Substrate Buried Heterointerface for Achieving Hole Transport Layer-Free Tin-Based Solar Cells with Efficiencies Surpassing 14.

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Angewandte Chemie International Edition Pub Date : 2024-11-18 DOI:10.1002/anie.202419183
Gengling Liu, Xianyuan Jiang, Yaorong He, Chun-Hsiao Kuan, Guo Yang, Wenhuai Feng, Xi Chen, Wu-Qiang Wu
{"title":"Halogen Radical-Activated Perovskite-Substrate Buried Heterointerface for Achieving Hole Transport Layer-Free Tin-Based Solar Cells with Efficiencies Surpassing 14.","authors":"Gengling Liu, Xianyuan Jiang, Yaorong He, Chun-Hsiao Kuan, Guo Yang, Wenhuai Feng, Xi Chen, Wu-Qiang Wu","doi":"10.1002/anie.202419183","DOIUrl":null,"url":null,"abstract":"<p><p>Sn-based perovskites have emerged as one of the most promising environmentally-friendly photovoltaic materials. Nonetheless, the low-cost production and stable operation of Sn-based perovskite solar cells (PSCs) are still limited by the costly hole transport layer (HTL) and the under-optimized interfacial carrier dynamics. Here, we innovatively developed a halogen radical chemical bridging strategy that enabled to remove the HTL and optimize the perovskite-substrate heterointerface for constructing high-performance, simplified Sn-based PSCs. The modification of ITO electrode by highly active chlorine radicals could effectively mitigate the surface oxygen vacancies, alter the chemical constitutions, and favorably down-shifted the work function of ITO surface to be close to the valence band of perovskites. As a result, the interfacial energy barrier was reduced by 0.20 eV and the carrier dynamics were optimized at the ITO/perovskite heterointerface. Encouragingly, the efficiency of HTL-free Sn-based PSCs was enhanced from 6.79% to 14.20%, representing the record performance for the Sn perovskite photovoltaics in the absence of HTL. Notably, the target device exhibited enhanced stability for 2000 h. The Cl-RCB strategy is also versatile to construct Pb-based and mixed Sn-Pb HTL-free PSCs, achieving efficiencies of 22.27% and 21.13%, respectively, all representing the advanced device performances for the carrier transport layer-free PSCs.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":" ","pages":"e202419183"},"PeriodicalIF":16.1000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202419183","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Sn-based perovskites have emerged as one of the most promising environmentally-friendly photovoltaic materials. Nonetheless, the low-cost production and stable operation of Sn-based perovskite solar cells (PSCs) are still limited by the costly hole transport layer (HTL) and the under-optimized interfacial carrier dynamics. Here, we innovatively developed a halogen radical chemical bridging strategy that enabled to remove the HTL and optimize the perovskite-substrate heterointerface for constructing high-performance, simplified Sn-based PSCs. The modification of ITO electrode by highly active chlorine radicals could effectively mitigate the surface oxygen vacancies, alter the chemical constitutions, and favorably down-shifted the work function of ITO surface to be close to the valence band of perovskites. As a result, the interfacial energy barrier was reduced by 0.20 eV and the carrier dynamics were optimized at the ITO/perovskite heterointerface. Encouragingly, the efficiency of HTL-free Sn-based PSCs was enhanced from 6.79% to 14.20%, representing the record performance for the Sn perovskite photovoltaics in the absence of HTL. Notably, the target device exhibited enhanced stability for 2000 h. The Cl-RCB strategy is also versatile to construct Pb-based and mixed Sn-Pb HTL-free PSCs, achieving efficiencies of 22.27% and 21.13%, respectively, all representing the advanced device performances for the carrier transport layer-free PSCs.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
卤素辐射激活的包晶石-衬底埋藏式异质界面实现无空穴传输层锡基太阳能电池,效率超过 14.
锡基过氧化物已成为最有前途的环保型光伏材料之一。然而,由于存在昂贵的空穴传输层(HTL)和未充分优化的界面载流子动力学,锡基包晶石太阳能电池(PSCs)的低成本生产和稳定运行仍然受到限制。在此,我们创新性地开发了一种卤素自由基化学桥接策略,能够去除空穴传输层并优化包晶石-衬底异质界面,从而构建高性能、简化的锡基 PSC。用高活性氯自由基修饰 ITO 电极可有效缓解表面氧空位,改变化学结构,并有利地降低 ITO 表面的功函数,使其接近过氧化物晶系的价带。因此,界面能垒降低了 0.20 eV,载流子动力学在 ITO/ 包罗晶异质界面得到了优化。令人鼓舞的是,不含 HTL 的锡基 PSCs 效率从 6.79% 提高到 14.20%,创下了在不含 HTL 的情况下锡包晶石光伏器件的最高性能纪录。Cl-RCB 策略还可用于构建铅基和锡铅混合无 HTL PSC,效率分别达到 22.27% 和 21.13%,均代表了无载流子传输层 PSC 的先进器件性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
期刊最新文献
Total Synthesis of (–)‐Cordycicadin D and 3,4‐trans‐Cordycicadins A and B: Entry to the 3,4‐trans‐Fused Cordycicadin Framework Inside Back Cover: Interface‐Triggered Spin‐Magnetic Effect in Rare Earth Intra‐particle Heterostructured Nanoalloys for Boosting Hydrogen Evolution Benzylic C(sp3)–H Phosphonylation via Dual Photo and Copper Catalysis Hypercrosslinked Metal‐Organic Polyhedra Electrolyte with High Transference Number and Fast Conduction of Li Ions O─O Radical Coupling in Ultrathin Reconstructed Co6.8Se8 Nanosheets for Effective Oxygen Evolution and Zinc-Air Batteries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1