{"title":"Association of precuneus Aβ burden with default mode network function.","authors":"Liang Cui, Zhen Zhang, You-Yi Tu, Min Wang, Yi-Hui Guan, Yue-Hua Li, Fang Xie, Qi-Hao Guo","doi":"10.1002/alz.14380","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>It remains unclear whether the local amyloid-beta (Aβ) burden in key regions within the default mode network (DMN) affects network and cognitive functions.</p><p><strong>Methods: </strong>Participants included 1002 individuals from the Chinese Preclinical Alzheimer's Disease Study cohort who underwent 18F-florbetapir positron emission tomography resting-state functional magnetic resonance imaging scanning and neuropsychological tests. The correlations between precuneus (PRC) Aβ burden, DMN function, and cognitive function were investigated.</p><p><strong>Results: </strong>In individuals with high PRC Aβ burden, there is a bidirectional relationship between DMN local function or functional connectivity and PRC Aβ deposition across various cognitive states, which is also linked to cognitive function. Even below the PRC Aβ threshold, DMN function remains related to PRC Aβ deposition and cognitive performance.</p><p><strong>Discussion: </strong>The findings reveal the critical role of PRC Aβ deposition in disrupting neural networks associated with cognitive decline and the necessity of early detection and monitoring of PRC Aβ deposition.</p><p><strong>Highlights: </strong>Precuneus (PRC) Aβ burden impacts DMN function in different cognitive stages. High PRC Aβ burden is linked to early neural compensation and subsequent dysfunction. Low PRC Aβ burden correlates with neural changes before significant Aβ accumulation. Changes in DMN function and connectivity provide insights into AD progression. Early detection of regional Aβ burden can help monitor the risk of cognitive decline.</p>","PeriodicalId":7471,"journal":{"name":"Alzheimer's & Dementia","volume":" ","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Alzheimer's & Dementia","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/alz.14380","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: It remains unclear whether the local amyloid-beta (Aβ) burden in key regions within the default mode network (DMN) affects network and cognitive functions.
Methods: Participants included 1002 individuals from the Chinese Preclinical Alzheimer's Disease Study cohort who underwent 18F-florbetapir positron emission tomography resting-state functional magnetic resonance imaging scanning and neuropsychological tests. The correlations between precuneus (PRC) Aβ burden, DMN function, and cognitive function were investigated.
Results: In individuals with high PRC Aβ burden, there is a bidirectional relationship between DMN local function or functional connectivity and PRC Aβ deposition across various cognitive states, which is also linked to cognitive function. Even below the PRC Aβ threshold, DMN function remains related to PRC Aβ deposition and cognitive performance.
Discussion: The findings reveal the critical role of PRC Aβ deposition in disrupting neural networks associated with cognitive decline and the necessity of early detection and monitoring of PRC Aβ deposition.
Highlights: Precuneus (PRC) Aβ burden impacts DMN function in different cognitive stages. High PRC Aβ burden is linked to early neural compensation and subsequent dysfunction. Low PRC Aβ burden correlates with neural changes before significant Aβ accumulation. Changes in DMN function and connectivity provide insights into AD progression. Early detection of regional Aβ burden can help monitor the risk of cognitive decline.
期刊介绍:
Alzheimer's & Dementia is a peer-reviewed journal that aims to bridge knowledge gaps in dementia research by covering the entire spectrum, from basic science to clinical trials to social and behavioral investigations. It provides a platform for rapid communication of new findings and ideas, optimal translation of research into practical applications, increasing knowledge across diverse disciplines for early detection, diagnosis, and intervention, and identifying promising new research directions. In July 2008, Alzheimer's & Dementia was accepted for indexing by MEDLINE, recognizing its scientific merit and contribution to Alzheimer's research.