Poly(Ionic Liquid) Electrolytes at an Extreme Salt Concentration for Solid-State Batteries.

IF 14.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Journal of the American Chemical Society Pub Date : 2024-11-18 DOI:10.1021/jacs.4c12616
Shinji Kondou, Mohanad Abdullah, Ivan Popov, Murillo L Martins, Luke A O'Dell, Hiroyuki Ueda, Faezeh Makhlooghiazad, Azusa Nakanishi, Taku Sudoh, Kazuhide Ueno, Masayoshi Watanabe, Patrick Howlett, Heng Zhang, Michel Armand, Alexei P Sokolov, Maria Forsyth, Fangfang Chen
{"title":"Poly(Ionic Liquid) Electrolytes at an Extreme Salt Concentration for Solid-State Batteries.","authors":"Shinji Kondou, Mohanad Abdullah, Ivan Popov, Murillo L Martins, Luke A O'Dell, Hiroyuki Ueda, Faezeh Makhlooghiazad, Azusa Nakanishi, Taku Sudoh, Kazuhide Ueno, Masayoshi Watanabe, Patrick Howlett, Heng Zhang, Michel Armand, Alexei P Sokolov, Maria Forsyth, Fangfang Chen","doi":"10.1021/jacs.4c12616","DOIUrl":null,"url":null,"abstract":"<p><p>Polymer-in-salt electrolytes were introduced three decades ago as an innovative solution to the challenge of low Li-ion conductivity in solvent-free solid polymer electrolytes. Despite significant progress, the approach still faces considerable challenges, ranging from a fundamental understanding to the development of suitable polymers and salts. A critical issue is maintaining both the stability and high conductivity of molten salts within a polymer matrix, which has constrained their further exploration. This research offers a promising solution by integrating cationic poly(ionic liquids) (polyIL) with a crystallization-resistive salt consisting of asymmetric anions. A stable polymer-in-salt electrolyte with an exceptionally high Li-salt content of up to 90 mol % was achieved, providing a valuable opportunity for the in-depth understanding of these electrolytes at an extremely high salt concentration. This work explicates how increased salt concentration affects coordination structures, glass transitions, ionic conductivity, and the decoupling and coupling of ion transport from structural dynamics in a polymer electrolyte, ultimately enhancing electrolyte performance. These findings provide significant knowledge advancement in the field, guiding the future design of polymer-in-salt electrolytes.</p>","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":" ","pages":""},"PeriodicalIF":14.4000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.4c12616","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Polymer-in-salt electrolytes were introduced three decades ago as an innovative solution to the challenge of low Li-ion conductivity in solvent-free solid polymer electrolytes. Despite significant progress, the approach still faces considerable challenges, ranging from a fundamental understanding to the development of suitable polymers and salts. A critical issue is maintaining both the stability and high conductivity of molten salts within a polymer matrix, which has constrained their further exploration. This research offers a promising solution by integrating cationic poly(ionic liquids) (polyIL) with a crystallization-resistive salt consisting of asymmetric anions. A stable polymer-in-salt electrolyte with an exceptionally high Li-salt content of up to 90 mol % was achieved, providing a valuable opportunity for the in-depth understanding of these electrolytes at an extremely high salt concentration. This work explicates how increased salt concentration affects coordination structures, glass transitions, ionic conductivity, and the decoupling and coupling of ion transport from structural dynamics in a polymer electrolyte, ultimately enhancing electrolyte performance. These findings provide significant knowledge advancement in the field, guiding the future design of polymer-in-salt electrolytes.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于固态电池的极端盐浓度聚(离子液体)电解质。
三十年前,盐中聚合物电解质作为一种创新解决方案问世,解决了无溶剂固体聚合物电解质锂离子电导率低的难题。尽管取得了重大进展,但这一方法仍然面临着相当大的挑战,从对基本原理的理解到合适聚合物和盐的开发,不一而足。其中一个关键问题是在聚合物基质中保持熔盐的稳定性和高电导率,这限制了进一步的探索。这项研究通过将阳离子聚(离子液体)(polyIL)与由不对称阴离子组成的抗结晶盐整合在一起,提供了一种前景广阔的解决方案。研究获得了一种稳定的盐中聚合物电解质,其锂盐含量高达 90 摩尔%,为深入了解这些盐浓度极高的电解质提供了宝贵的机会。这项研究阐述了盐浓度的增加如何影响聚合物电解质中的配位结构、玻璃态转变、离子导电性以及离子传输与结构动力学的解耦和耦合,最终提高电解质的性能。这些发现为该领域提供了重要的知识进步,为盐中聚合物电解质的未来设计提供了指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
期刊最新文献
Geminal Synergy in Pt–Co Dual-Atom Catalysts: From Synthesis to Photocatalytic Hydrogen Production Performance Descriptor of Subsurface Metal-Promoted Boron Catalysts for Low-Temperature Propane Oxidative Dehydrogenation to Propylene Remote-Contact Catalysis for Target-Diameter Semiconducting Carbon Nanotube Arrays DNA-Regulated Multi-Protein Complement Control Issue Publication Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1