Hydrogen-Bond-Induced Melem Assemblies to Resist Aggregation-Caused Quenching for Ultrasensitive ECL Detection of COVID-19 Antigen.

IF 6.7 1区 化学 Q1 CHEMISTRY, ANALYTICAL Analytical Chemistry Pub Date : 2024-11-19 DOI:10.1021/acs.analchem.4c04016
Hao-Tian Zhu, Jing-Yi Bao, Jin-Wei Kang, Ai-Jun Wang, Pei-Xin Yuan, Jiu-Ju Feng
{"title":"Hydrogen-Bond-Induced Melem Assemblies to Resist Aggregation-Caused Quenching for Ultrasensitive ECL Detection of COVID-19 Antigen.","authors":"Hao-Tian Zhu, Jing-Yi Bao, Jin-Wei Kang, Ai-Jun Wang, Pei-Xin Yuan, Jiu-Ju Feng","doi":"10.1021/acs.analchem.4c04016","DOIUrl":null,"url":null,"abstract":"<p><p>Nowadays, aggregation-caused quenching (ACQ) of organic molecules in aqueous media seriously restricts their analytical and biomedical applications. In this work, hydrogen bond (H-bond) was utilized to resist the ACQ effect of 2,5,8-triamino-1,3,4,6,7,9,9b-heptaazaphenalene (Melem) as an advanced electrochemiluminescence (ECL) luminophore, whose ECL process was carefully studied in an aqueous K<sub>2</sub>S<sub>2</sub>O<sub>8</sub> system coupled with electron paramagnetic resonance (EPR) measurements. Notably, the H-bond-induced Melem assemblies (Melem-H) showed 16.6-fold enhancement in the ECL signals as compared to the Melem aggregates (Melem-A), combined by elaborating the enhanced mechanism. On such basis, the effective ECL signal transduction was <i>in situ</i> achieved through the specific recognition of the double-stranded DNA embedded in Melem-H assemblies (Me-dsDNA) with spike protein (SP) of coronavirus disease 2019 (COVID-19). For that, such an ECL biosensor showed a wider linear range (1.0-125.0 pg mL<sup>-1</sup>) with a lower limit of detection (LOD) down to 0.45 pg mL<sup>-1</sup>, which also displayed acceptable results in analysis of human nasal swab samples. Therefore, the work provides a distinctive insight on addressing the ACQ effect and broadening the application scope of the organic emitter and offers a simple platform for biomedical detection.</p>","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":null,"pages":null},"PeriodicalIF":6.7000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.analchem.4c04016","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Nowadays, aggregation-caused quenching (ACQ) of organic molecules in aqueous media seriously restricts their analytical and biomedical applications. In this work, hydrogen bond (H-bond) was utilized to resist the ACQ effect of 2,5,8-triamino-1,3,4,6,7,9,9b-heptaazaphenalene (Melem) as an advanced electrochemiluminescence (ECL) luminophore, whose ECL process was carefully studied in an aqueous K2S2O8 system coupled with electron paramagnetic resonance (EPR) measurements. Notably, the H-bond-induced Melem assemblies (Melem-H) showed 16.6-fold enhancement in the ECL signals as compared to the Melem aggregates (Melem-A), combined by elaborating the enhanced mechanism. On such basis, the effective ECL signal transduction was in situ achieved through the specific recognition of the double-stranded DNA embedded in Melem-H assemblies (Me-dsDNA) with spike protein (SP) of coronavirus disease 2019 (COVID-19). For that, such an ECL biosensor showed a wider linear range (1.0-125.0 pg mL-1) with a lower limit of detection (LOD) down to 0.45 pg mL-1, which also displayed acceptable results in analysis of human nasal swab samples. Therefore, the work provides a distinctive insight on addressing the ACQ effect and broadening the application scope of the organic emitter and offers a simple platform for biomedical detection.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
氢键诱导的 Melem 组装可抵御聚集引起的淬火,用于 COVID-19 抗原的超灵敏 ECL 检测。
如今,有机分子在水介质中的聚集淬灭(ACQ)严重限制了它们在分析和生物医学方面的应用。在这项研究中,利用氢键(H-bond)抵消了 2,5,8-三氨基-1,3,4,6,7,9,9b-庚氮萘(Melem)作为高级电致化学发光(ECL)发光体的 ACQ 效应,并在 K2S2O8 水体系中结合电子顺磁共振(EPR)测量仔细研究了其 ECL 过程。值得注意的是,与 Melem 聚集体(Melem-A)相比,H-邦德诱导的 Melem 聚集体(Melem-H)的 ECL 信号增强了 16.6 倍,并结合阐述了增强机制。在此基础上,通过冠状病毒病 2019(COVID-19)的尖峰蛋白(SP)对嵌入 Melem-H 聚集体(Me-dsDNA)的双链 DNA 的特异性识别,原位实现了有效的 ECL 信号转导。为此,这种 ECL 生物传感器显示出更宽的线性范围(1.0-125.0 pg mL-1),检测下限(LOD)低至 0.45 pg mL-1,在分析人类鼻拭子样本时也显示出可接受的结果。因此,这项工作为解决 ACQ 效应和扩大有机发射器的应用范围提供了独特的见解,并为生物医学检测提供了一个简单的平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Analytical Chemistry
Analytical Chemistry 化学-分析化学
CiteScore
12.10
自引率
12.20%
发文量
1949
审稿时长
1.4 months
期刊介绍: Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.
期刊最新文献
A Tandem-Locked Fluorescent Probe Activated by Hypoxia and a Viscous Environment for Precise Intraoperative Imaging of Tumor and Instant Assessment of Ferroptosis-Mediated Therapy. Hydrogen-Bond-Induced Melem Assemblies to Resist Aggregation-Caused Quenching for Ultrasensitive ECL Detection of COVID-19 Antigen. Microfluidic Chip for Cell Fusion and In Situ Separation of Fused Cells. Postproline Cleaving Enzymes also Show Specificity to Reduced Cysteine. Conformational Dynamics of Hemoglobin in Solution and the Gas Phase Elucidated by Mass Spectrometry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1