Nitrogen-Doped Graphene-Supported Tungsten Oxynitride Nanoparticles as an Efficient Bidirectional Polysulfide Convertor for Advanced Lithium-Sulfur Batteries.
Lulu Suo, Lei Feng, Juan Wang, Miaomiao Xing, Shuhua Lv, Hongyu Mou, Xing Gao, Deliang Zhang, Jibin Song
{"title":"Nitrogen-Doped Graphene-Supported Tungsten Oxynitride Nanoparticles as an Efficient Bidirectional Polysulfide Convertor for Advanced Lithium-Sulfur Batteries.","authors":"Lulu Suo, Lei Feng, Juan Wang, Miaomiao Xing, Shuhua Lv, Hongyu Mou, Xing Gao, Deliang Zhang, Jibin Song","doi":"10.1021/acs.nanolett.4c04791","DOIUrl":null,"url":null,"abstract":"<p><p>Catalytic materials are considered pivotal in addressing the sluggish kinetics and shuttle effect in lithium-sulfur batteries (LSBs). However, effectively harnessing the utilization rate of active sites within catalytic materials remains a pivotal challenge. In this study, a novel conductive nitrogen-doped graphene-loaded tungsten oxynitride nanoparticle (WNO/NG) with abundant active sites is prepared through a polymer-assisted templating method for serving as a sulfur host. Electrochemical analysis coupled with <i>in situ</i> XRD confirm the dual-directional electrocatalytic behavior of WNO/NG for accelerating the conversion of lithium polysulfide (LiPSs). Theoretical calculations demonstrate that the intrinsic mechanism underlying the performance enhancement is attributed to the high inherent conductivity of WNO/NG and the efficient interface charge transfer with LiPSs. The assembled 500 mAh pouch cell delivers a 97% capacity retention after 25 cycles. This strategy provides valuable insights for designing catalytic materials with abundant activity sites and sheds light on the mechanisms of catalytic enhancement in Li-S chemistry.</p>","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":" ","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c04791","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Catalytic materials are considered pivotal in addressing the sluggish kinetics and shuttle effect in lithium-sulfur batteries (LSBs). However, effectively harnessing the utilization rate of active sites within catalytic materials remains a pivotal challenge. In this study, a novel conductive nitrogen-doped graphene-loaded tungsten oxynitride nanoparticle (WNO/NG) with abundant active sites is prepared through a polymer-assisted templating method for serving as a sulfur host. Electrochemical analysis coupled with in situ XRD confirm the dual-directional electrocatalytic behavior of WNO/NG for accelerating the conversion of lithium polysulfide (LiPSs). Theoretical calculations demonstrate that the intrinsic mechanism underlying the performance enhancement is attributed to the high inherent conductivity of WNO/NG and the efficient interface charge transfer with LiPSs. The assembled 500 mAh pouch cell delivers a 97% capacity retention after 25 cycles. This strategy provides valuable insights for designing catalytic materials with abundant activity sites and sheds light on the mechanisms of catalytic enhancement in Li-S chemistry.
期刊介绍:
Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including:
- Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale
- Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies
- Modeling and simulation of synthetic, assembly, and interaction processes
- Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance
- Applications of nanoscale materials in living and environmental systems
Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.