Elucidating 'Transfer-Lithiation' from Graphite to Si within Composite Anodes during Pre-Lithiation and Regular Charging.

IF 7.5 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY ChemSusChem Pub Date : 2024-11-19 DOI:10.1002/cssc.202401290
Lars Frankenstein, Pascal Jan Glomb, Marvin Mohrhardt, Steffen Böckmann, Leon Focks, Aurora Gomez-Martin, Tobias Placke, Michael Ryan Hansen, Martin Winter, Johannes Kasnatscheew
{"title":"Elucidating 'Transfer-Lithiation' from Graphite to Si within Composite Anodes during Pre-Lithiation and Regular Charging.","authors":"Lars Frankenstein, Pascal Jan Glomb, Marvin Mohrhardt, Steffen Böckmann, Leon Focks, Aurora Gomez-Martin, Tobias Placke, Michael Ryan Hansen, Martin Winter, Johannes Kasnatscheew","doi":"10.1002/cssc.202401290","DOIUrl":null,"url":null,"abstract":"<p><p>Si-based anodes can increase specific energy and energy density of Li ion batteries. However, the volume-induced material stress and capacity loss necessitates only a partial Si utilization within composite anodes, typically with state-of-the-art graphite, so called Si/Gr composites. In this work, various Si nanowires (SiNWs), a promising Si architecture for these composites, are investigated and modified via pre-lithiation. Though, charged pre-lithiated anodes show potentials below 0 V vs. Li|Li+ in the initial cycles, they do not show indications for metallic Li, which is likely a hint for a triggered surface Li depletion in course of a continuous \"transfer-lithiation\" from lithiated Gr to Si, which is indicated by decreasing LiC6 and increasing LixSiy signals via nuclear magnetic resonance (NMR), X-ray diffraction (XRD) as well as shifts in capacities of respective voltage plateaus during discharge after storage. A relevant contribution of self-discharge is unlikely as shown by a stable open-circuit-voltage during storage in charged state and similar subsequent discharge capacities, being consequently also a hint for an intra-electrode capacity shift. The process of transfer lithiation is finally validated via solid-state 7Li NMR for varied Si morphology, i.e., amorphous and crystalline, as well as during pre-lithiation with passivated lithium metal powder (PLMP).</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":" ","pages":"e202401290"},"PeriodicalIF":7.5000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cssc.202401290","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Si-based anodes can increase specific energy and energy density of Li ion batteries. However, the volume-induced material stress and capacity loss necessitates only a partial Si utilization within composite anodes, typically with state-of-the-art graphite, so called Si/Gr composites. In this work, various Si nanowires (SiNWs), a promising Si architecture for these composites, are investigated and modified via pre-lithiation. Though, charged pre-lithiated anodes show potentials below 0 V vs. Li|Li+ in the initial cycles, they do not show indications for metallic Li, which is likely a hint for a triggered surface Li depletion in course of a continuous "transfer-lithiation" from lithiated Gr to Si, which is indicated by decreasing LiC6 and increasing LixSiy signals via nuclear magnetic resonance (NMR), X-ray diffraction (XRD) as well as shifts in capacities of respective voltage plateaus during discharge after storage. A relevant contribution of self-discharge is unlikely as shown by a stable open-circuit-voltage during storage in charged state and similar subsequent discharge capacities, being consequently also a hint for an intra-electrode capacity shift. The process of transfer lithiation is finally validated via solid-state 7Li NMR for varied Si morphology, i.e., amorphous and crystalline, as well as during pre-lithiation with passivated lithium metal powder (PLMP).

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
阐明复合阳极在预锂化和常规充电过程中从石墨到硅的 "转移锂化"。
硅基阳极可以提高锂离子电池的比能量和能量密度。然而,由于体积引起的材料应力和容量损失,复合阳极中只能部分利用硅,通常与最先进的石墨一起使用,即所谓的硅/铬复合材料。在这项工作中,我们研究了各种硅纳米线(SiNWs),它们是这些复合材料中一种很有前景的硅结构,并通过预石墨化对其进行了改性。虽然带电的预石墨化阳极在初始循环中对 Li|Li+ 的电位低于 0 V,但它们并没有显示出金属锂的迹象,这很可能暗示了在从石墨化的 Gr 到 Si 的持续 "转移石墨化 "过程中引发的表面锂耗竭,通过核磁共振 (NMR)、X 射线衍射 (XRD) 和存储后放电过程中各自电压平台的容量变化,可以看出 LiC6 信号减少,LixSiy 信号增加。在带电状态下储存期间,开路电压稳定,随后的放电容量也相似,这表明不太可能存在自放电。最后,通过固态 7Li NMR,对不同硅形态(即无定形和结晶)以及钝化锂金属粉末(PLMP)预锂化过程中的转移锂化过程进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ChemSusChem
ChemSusChem 化学-化学综合
CiteScore
15.80
自引率
4.80%
发文量
555
审稿时长
1.8 months
期刊介绍: ChemSusChem Impact Factor (2016): 7.226 Scope: Interdisciplinary journal Focuses on research at the interface of chemistry and sustainability Features the best research on sustainability and energy Areas Covered: Chemistry Materials Science Chemical Engineering Biotechnology
期刊最新文献
Conceptualizing Surface-Like Diffusion for Ultrafast Ionic Conduction in Solid-State Materials. Elucidating 'Transfer-Lithiation' from Graphite to Si within Composite Anodes during Pre-Lithiation and Regular Charging. Ni/PiNe Heterogeneous Catalyst from Biomass Waste: Low-Loading, Ligand-Free Suzuki-Miyaura Cross-Coupling. Allylation and Thermosetting of Acetosolv Wheat Straw Lignin. Boron doping induced strong anchor effect between bimetal NiCo alloy and carbon support for efficient electrocatalytic nitrate reduction to ammonia.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1