Mamta Sharma, Neeta Raj Sharma, Rameshwar S. Kanwar
{"title":"Performance analysis of mesocosm-constructed wetland containing agricultural waste-derived substrates for treatment of wastewater","authors":"Mamta Sharma, Neeta Raj Sharma, Rameshwar S. Kanwar","doi":"10.1007/s10661-024-13411-6","DOIUrl":null,"url":null,"abstract":"<div><p>Integrating native ornamental plants with substrate amended with lignocellulosic biomass and biochar in vertical sub-surface flow constructed wetlands offers a novel and effective approach to wastewater treatment. This study evaluates the potential of mesocosm constructed wetland systems using native ornamental plants (<i>Canna indica</i>, <i>Lilium wallichianum</i>, and <i>Tagetes erecta</i>) grown in substrates amended with lignocellulosic biomass and biochar. The influent and effluent were analyzed for pH, total dissolved solids (TDS), biochemical oxygen demand (BOD), chemical oxygen demand (COD), phosphorus (PO<sub>4</sub>-P), and nitrogen forms, i.e., ammonia (NH<sub>4</sub>-N) and nitrate (NO<sub>3</sub>-N) for 5 weeks. Investigated mesocosms showed an average removal efficiency of 49.21% for BOD, 53.76% for COD, 40.64% for NH<sub>4</sub>-N, 41.76% for NO<sub>3</sub>-N, and 21.53% for PO<sub>4</sub>-P. <i>Canna indica</i> demonstrated the highest removal efficiencies, achieving 58.19% for BOD and 64.49% for COD, followed by <i>Lilium wallichianum</i> with 56.12% for BOD and 62% for COD, while <i>Tagetes erecta</i> showed lower efficiencies of 49.63% for BOD and 52.24% for COD. The result shows that the designed mesocosms are a promising nature-based alternative to the technologically complex and expensive conventional technologies, with numerous additional ecological benefits. This study also indicates that the locally available organic materials are effective substrate components for constructed wetlands and after their use in wetlands; these digested organic materials may further be used as an effective source of nutrient-rich fertilizers or soil amendments in agriculture.</p></div>","PeriodicalId":544,"journal":{"name":"Environmental Monitoring and Assessment","volume":"196 12","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Monitoring and Assessment","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s10661-024-13411-6","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Integrating native ornamental plants with substrate amended with lignocellulosic biomass and biochar in vertical sub-surface flow constructed wetlands offers a novel and effective approach to wastewater treatment. This study evaluates the potential of mesocosm constructed wetland systems using native ornamental plants (Canna indica, Lilium wallichianum, and Tagetes erecta) grown in substrates amended with lignocellulosic biomass and biochar. The influent and effluent were analyzed for pH, total dissolved solids (TDS), biochemical oxygen demand (BOD), chemical oxygen demand (COD), phosphorus (PO4-P), and nitrogen forms, i.e., ammonia (NH4-N) and nitrate (NO3-N) for 5 weeks. Investigated mesocosms showed an average removal efficiency of 49.21% for BOD, 53.76% for COD, 40.64% for NH4-N, 41.76% for NO3-N, and 21.53% for PO4-P. Canna indica demonstrated the highest removal efficiencies, achieving 58.19% for BOD and 64.49% for COD, followed by Lilium wallichianum with 56.12% for BOD and 62% for COD, while Tagetes erecta showed lower efficiencies of 49.63% for BOD and 52.24% for COD. The result shows that the designed mesocosms are a promising nature-based alternative to the technologically complex and expensive conventional technologies, with numerous additional ecological benefits. This study also indicates that the locally available organic materials are effective substrate components for constructed wetlands and after their use in wetlands; these digested organic materials may further be used as an effective source of nutrient-rich fertilizers or soil amendments in agriculture.
期刊介绍:
Environmental Monitoring and Assessment emphasizes technical developments and data arising from environmental monitoring and assessment, the use of scientific principles in the design of monitoring systems at the local, regional and global scales, and the use of monitoring data in assessing the consequences of natural resource management actions and pollution risks to man and the environment.