Rhodium nanospheres for ultraviolet and visible plasmonics.

IF 8 2区 材料科学 Q1 CHEMISTRY, PHYSICAL Nanoscale Horizons Pub Date : 2024-11-19 DOI:10.1039/d4nh00449c
David Muñeton Arboleda, Vito Coviello, Arianna Palumbo, Roberto Pilot, Vincenzo Amendola
{"title":"Rhodium nanospheres for ultraviolet and visible plasmonics.","authors":"David Muñeton Arboleda, Vito Coviello, Arianna Palumbo, Roberto Pilot, Vincenzo Amendola","doi":"10.1039/d4nh00449c","DOIUrl":null,"url":null,"abstract":"<p><p>The development and understanding of alternative plasmonic materials are crucial steps for leveraging new plasmonic technologies. Although gold and silver nanostructures have been intensively studied, the promising plasmonic, chemical and physical attributes of rhodium remain poorly investigated. Here, we report the synthesis and plasmonic response of spherical Rh nanoparticles (NPs) with sizes in the 20-40 nm range. Due to the high cohesive energy of this metal, synthesis and experimental investigations of Rh nanospheres in this size range have not been reported; yet, it becomes possible here using a green and one-step laser ablation in liquid method. The localized surface plasmon (LSP) of Rh NPs falls in the ultraviolet spectral range (195-255 nm), but the absorption tail in the visible region increases significantly upon clustering of the nanospheres. The surface binding ability of Rh NPs towards thiolated molecules is equivalent to that of Au and Ag NPs, while their chemical and physical stability at high temperatures and in the presence of strong acids such as aqua regia is superior to those of Au and Ag NPs. The plasmonic features are well described by classical electrodynamics, and the results are comparable to Au and Ag NPs in terms of extinction cross-section and local field enhancement, although blue shifted. This allowed, for instance, their use as an optical nanosensor for the detection of ions of toxic metals in aqueous solution and for the surface enhanced Raman scattering of various compounds under blue light excitation. This study explores the prospects of Rh NPs in the realms of UV and visible plasmonics, while also envisaging a multitude of opportunities for other underexplored applications related to plasmon-enhanced catalysis and chiroplasmonics.</p>","PeriodicalId":93,"journal":{"name":"Nanoscale Horizons","volume":" ","pages":""},"PeriodicalIF":8.0000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Horizons","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4nh00449c","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The development and understanding of alternative plasmonic materials are crucial steps for leveraging new plasmonic technologies. Although gold and silver nanostructures have been intensively studied, the promising plasmonic, chemical and physical attributes of rhodium remain poorly investigated. Here, we report the synthesis and plasmonic response of spherical Rh nanoparticles (NPs) with sizes in the 20-40 nm range. Due to the high cohesive energy of this metal, synthesis and experimental investigations of Rh nanospheres in this size range have not been reported; yet, it becomes possible here using a green and one-step laser ablation in liquid method. The localized surface plasmon (LSP) of Rh NPs falls in the ultraviolet spectral range (195-255 nm), but the absorption tail in the visible region increases significantly upon clustering of the nanospheres. The surface binding ability of Rh NPs towards thiolated molecules is equivalent to that of Au and Ag NPs, while their chemical and physical stability at high temperatures and in the presence of strong acids such as aqua regia is superior to those of Au and Ag NPs. The plasmonic features are well described by classical electrodynamics, and the results are comparable to Au and Ag NPs in terms of extinction cross-section and local field enhancement, although blue shifted. This allowed, for instance, their use as an optical nanosensor for the detection of ions of toxic metals in aqueous solution and for the surface enhanced Raman scattering of various compounds under blue light excitation. This study explores the prospects of Rh NPs in the realms of UV and visible plasmonics, while also envisaging a multitude of opportunities for other underexplored applications related to plasmon-enhanced catalysis and chiroplasmonics.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于紫外线和可见等离子体的铑纳米球。
开发和了解替代性等离子材料是利用新等离子技术的关键步骤。尽管对金和银纳米结构进行了深入研究,但对铑极具前景的等离子、化学和物理属性的研究仍然很少。在此,我们报告了尺寸在 20-40 纳米范围内的球形铑纳米粒子(NPs)的合成和等离子响应。由于这种金属的内聚能很高,目前还没有关于这种尺寸范围的 Rh 纳米球的合成和实验研究的报道。Rh NPs 的局部表面等离子体(LSP)位于紫外光谱范围(195-255 nm),但纳米球聚集后,其在可见光区域的吸收尾迹显著增加。Rh NPs 与硫醇分子的表面结合能力与 Au 和 Ag NPs 相当,而其在高温和王水等强酸存在下的化学和物理稳定性则优于 Au 和 Ag NPs。经典电动力学很好地描述了它们的等离子特征,就消光截面和局部场增强而言,其结果与金和银 NPs 相当,但有蓝移。这使得它们可以用作水溶液中有毒金属离子检测的光学纳米传感器,以及蓝光激发下各种化合物的表面增强拉曼散射。本研究探讨了 Rh NPs 在紫外和可见光等离子体领域的应用前景,同时也为与等离子体增强催化和气动等离子体有关的其他未充分开发的应用提供了大量机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nanoscale Horizons
Nanoscale Horizons Materials Science-General Materials Science
CiteScore
16.30
自引率
1.00%
发文量
141
期刊介绍: Nanoscale Horizons stands out as a premier journal for publishing exceptionally high-quality and innovative nanoscience and nanotechnology. The emphasis lies on original research that introduces a new concept or a novel perspective (a conceptual advance), prioritizing this over reporting technological improvements. Nevertheless, outstanding articles showcasing truly groundbreaking developments, including record-breaking performance, may also find a place in the journal. Published work must be of substantial general interest to our broad and diverse readership across the nanoscience and nanotechnology community.
期刊最新文献
Back cover "Sweet MOFs": exploring the potential and restraints of integrating carbohydrates with metal-organic frameworks for biomedical applications. Extracellular vesicles of different cellular origin feature distinct biomolecular corona dynamics. Rhodium nanospheres for ultraviolet and visible plasmonics. Nanoscale Horizons Emerging Investigator Series: Dr Mohammad Malakooti, University of Washington, USA.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1