3D Crystal Construction by Single-Crystal 2D Material Supercell Multiplying

IF 14.1 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Science Pub Date : 2024-11-18 DOI:10.1002/advs.202411656
Wenhao Li, Jichuang Shen, Yaqing Ma, Xiang Xu, Han Chen, Lida Yu, Chen Ji, Menglin He, Kezhao Ma, Yiwei Duo, Li Wang, Tongbo Wei, Liping Shi, Muhong Wu, Kaihui Liu, Huaze Zhu, Wei Kong
{"title":"3D Crystal Construction by Single-Crystal 2D Material Supercell Multiplying","authors":"Wenhao Li,&nbsp;Jichuang Shen,&nbsp;Yaqing Ma,&nbsp;Xiang Xu,&nbsp;Han Chen,&nbsp;Lida Yu,&nbsp;Chen Ji,&nbsp;Menglin He,&nbsp;Kezhao Ma,&nbsp;Yiwei Duo,&nbsp;Li Wang,&nbsp;Tongbo Wei,&nbsp;Liping Shi,&nbsp;Muhong Wu,&nbsp;Kaihui Liu,&nbsp;Huaze Zhu,&nbsp;Wei Kong","doi":"10.1002/advs.202411656","DOIUrl":null,"url":null,"abstract":"<p>2D stacking presents a promising avenue for creating periodic superstructures that unveil novel physical phenomena. While extensive research has focused on lateral 2D material superstructures formed through composition modulation and twisted moiré structures, the exploration of vertical periodicity in 2D material superstructures remains limited. Although weak van der Waals interfaces enable layer-by-layer vertical stacking, traditional methods struggle to control in-plane crystal orientation over large areas, and the vertical dimension is constrained by unscalable, low-throughput processes, preventing the achievement of global order structures. In this study, a supercell multiplying approach is introduced that enables high-throughput construction of 3D superstructures on a macroscopic scale, utilizing artificially stacked single-crystalline 2D multilayers as foundational repeating units. By employing wafer-scale single-crystalline 2D materials and referencing the crystal orientation of substrates, the method ensures precise alignment of crystal orientation within and across each supercell, thereby achieving controllable periodicity along all three axes. A centimeter-scale 3R-MoS₂ crystal is successfully constructed, comprising over 200 monolayers of single-crystalline MoS₂, through a bottom-up stacking process. Additionally, the approach accommodates the integration of amorphous oxide, enabling the assembly of 3D non-linear optical crystals with quasi-phase matching. This method paves the way for the bottom-up construction of macroscopic artificial 3D crystals with atomic plane precision, enabling tailored optical, electrical, and thermal properties and advancing the development of novel artificial materials and high-performance applications.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":"12 2","pages":""},"PeriodicalIF":14.1000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11727270/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/advs.202411656","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

2D stacking presents a promising avenue for creating periodic superstructures that unveil novel physical phenomena. While extensive research has focused on lateral 2D material superstructures formed through composition modulation and twisted moiré structures, the exploration of vertical periodicity in 2D material superstructures remains limited. Although weak van der Waals interfaces enable layer-by-layer vertical stacking, traditional methods struggle to control in-plane crystal orientation over large areas, and the vertical dimension is constrained by unscalable, low-throughput processes, preventing the achievement of global order structures. In this study, a supercell multiplying approach is introduced that enables high-throughput construction of 3D superstructures on a macroscopic scale, utilizing artificially stacked single-crystalline 2D multilayers as foundational repeating units. By employing wafer-scale single-crystalline 2D materials and referencing the crystal orientation of substrates, the method ensures precise alignment of crystal orientation within and across each supercell, thereby achieving controllable periodicity along all three axes. A centimeter-scale 3R-MoS₂ crystal is successfully constructed, comprising over 200 monolayers of single-crystalline MoS₂, through a bottom-up stacking process. Additionally, the approach accommodates the integration of amorphous oxide, enabling the assembly of 3D non-linear optical crystals with quasi-phase matching. This method paves the way for the bottom-up construction of macroscopic artificial 3D crystals with atomic plane precision, enabling tailored optical, electrical, and thermal properties and advancing the development of novel artificial materials and high-performance applications.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过单晶二维材料超级电池倍增构建三维晶体。
二维堆叠是创造周期性超结构、揭示新奇物理现象的一条大有可为的途径。虽然大量研究集中于通过成分调制和扭曲摩尔纹结构形成的横向二维材料超结构,但对二维材料超结构中垂直周期性的探索仍然有限。虽然薄弱的范德瓦尔斯界面可实现逐层垂直堆叠,但传统方法难以控制大面积的面内晶体取向,而且垂直维度受制于不可扩展的低吞吐量工艺,无法实现全局有序结构。本研究引入了一种超级胞乘法,利用人工堆叠的单晶二维多层板作为基础重复单元,在宏观尺度上高通量构建三维超结构。通过采用晶圆级单晶二维材料并参考基底的晶体取向,该方法可确保晶体取向在每个超胞内部和整个超胞之间精确对齐,从而实现沿所有三个轴向的可控周期性。通过自下而上的堆叠过程,成功构建了厘米级的 3R-MoS₂ 晶体,由 200 多个单晶 MoS₂ 单层组成。此外,该方法还能整合非晶氧化物,从而组装出具有准相匹配功能的三维非线性光学晶体。这种方法为自下而上构建具有原子面精度的宏观人工三维晶体铺平了道路,可实现量身定制的光学、电学和热学特性,推动新型人工材料和高性能应用的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Science
Advanced Science CHEMISTRY, MULTIDISCIPLINARYNANOSCIENCE &-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
18.90
自引率
2.60%
发文量
1602
审稿时长
1.9 months
期刊介绍: Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.
期刊最新文献
Machine Learning Driven Window Blinds Inspired Porous Carbon-Based Flake for Ultra-Broadband Electromagnetic Wave Absorption. HMGB2-RAD21 Axis Promotes Fibro/Adipogenic Progenitor Proliferation and Regulates Fat Infiltration. USP9X as a Candidate Mediator of Prenatal Aspirin-Induced Ovarian Reserve Reduction in Offspring Mice. Tailoring Intermediate Adsorption Through d-band Mismatch Strategy of Heterojunction to Achieve Industrial Overall Water Splitting. Targeting Lactate and Lactylation in Cancer Metabolism and Immunotherapy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1