Ling-Rui Meng, Hua Chen, Wen-Qian Chen, Yi Gao, Zi-Wei Li, Zi Ye, Zhao-Hui Li
{"title":"Corneal subepithelial nerve fibers in type 2 diabetes: potential biomarker of diabetic neuropathy.","authors":"Ling-Rui Meng, Hua Chen, Wen-Qian Chen, Yi Gao, Zi-Wei Li, Zi Ye, Zhao-Hui Li","doi":"10.18240/ijo.2024.11.12","DOIUrl":null,"url":null,"abstract":"<p><strong>Aim: </strong>To observe the changes in corneal subepithelial nerve fibers (CNFs) and Langerhans cells (LCs) in patients with type 2 diabetes using corneal laser confocal microscopy (CLCM).</p><p><strong>Methods: </strong>A total of 60 patients (64 eyes), including 40 patients with type 2 diabetes (DM group) and 20 subjects without diabetes (control group) were included with CLCM. Neuron J plugin of Image J software were used for quantitative analysis of CNF length (CNFL), CNF density (CNFD), corneal nerve branch fiber density (CNBD), main branch length density, branch length density, corneal nerve fiber tortuosity (NT) score, and LCs density. An independent samples <i>t</i>-test to analyze the variability between the two groups was performed, and Pearson correlation analysis was used to analyze the relationships between CNF and multiple biochemical indicators in the DM group. The predictive power of CNF for type 2 diabetes was assessed using the receiver operating characteristic (ROC) curve.</p><p><strong>Results: </strong>There were significant differences in the CNFL, CNFD, and main branch length density between two groups. The results of Pearson correlation analysis showed a significant negative correlation between CNFD and the duration of diabetes as well as triglyceride levels and total cholesterol, and a significant positive correlation between CNFD and serum albumin. In addition, the NT score showed a positive correlation and urea nitrogen, similar to the positive correlation observed between LC density and glycosylated hemoglobin (HbA1c) levels. CNFD showed the highest area under the curve (AUC of ROC) value, followed by main branch length density and CNFL. The AUC of the ROC curve under the logistic regression model also demonstrated good predictive values. The cut-off values of CNFD, CNFL, and main branch length density for diabetes showed 31.25, 18.85, and 12.56, respectively.</p><p><strong>Conclusion: </strong>In patients with type 2 diabetes, there is a notable reduction in both CNFL and CNFD. These measurements can be influenced by various blood biochemical factors. However, the compromised nerve fibers can serve as valuable indicators for predicting the onset of type 2 diabetes and also as biomarkers for detecting diabetic neuropathy and its related complications.</p>","PeriodicalId":14312,"journal":{"name":"International journal of ophthalmology","volume":"17 11","pages":"2060-2066"},"PeriodicalIF":1.9000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11528268/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of ophthalmology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.18240/ijo.2024.11.12","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Aim: To observe the changes in corneal subepithelial nerve fibers (CNFs) and Langerhans cells (LCs) in patients with type 2 diabetes using corneal laser confocal microscopy (CLCM).
Methods: A total of 60 patients (64 eyes), including 40 patients with type 2 diabetes (DM group) and 20 subjects without diabetes (control group) were included with CLCM. Neuron J plugin of Image J software were used for quantitative analysis of CNF length (CNFL), CNF density (CNFD), corneal nerve branch fiber density (CNBD), main branch length density, branch length density, corneal nerve fiber tortuosity (NT) score, and LCs density. An independent samples t-test to analyze the variability between the two groups was performed, and Pearson correlation analysis was used to analyze the relationships between CNF and multiple biochemical indicators in the DM group. The predictive power of CNF for type 2 diabetes was assessed using the receiver operating characteristic (ROC) curve.
Results: There were significant differences in the CNFL, CNFD, and main branch length density between two groups. The results of Pearson correlation analysis showed a significant negative correlation between CNFD and the duration of diabetes as well as triglyceride levels and total cholesterol, and a significant positive correlation between CNFD and serum albumin. In addition, the NT score showed a positive correlation and urea nitrogen, similar to the positive correlation observed between LC density and glycosylated hemoglobin (HbA1c) levels. CNFD showed the highest area under the curve (AUC of ROC) value, followed by main branch length density and CNFL. The AUC of the ROC curve under the logistic regression model also demonstrated good predictive values. The cut-off values of CNFD, CNFL, and main branch length density for diabetes showed 31.25, 18.85, and 12.56, respectively.
Conclusion: In patients with type 2 diabetes, there is a notable reduction in both CNFL and CNFD. These measurements can be influenced by various blood biochemical factors. However, the compromised nerve fibers can serve as valuable indicators for predicting the onset of type 2 diabetes and also as biomarkers for detecting diabetic neuropathy and its related complications.
期刊介绍:
· International Journal of Ophthalmology-IJO (English edition) is a global ophthalmological scientific publication
and a peer-reviewed open access periodical (ISSN 2222-3959 print, ISSN 2227-4898 online).
This journal is sponsored by Chinese Medical Association Xi’an Branch and obtains guidance and support from
WHO and ICO (International Council of Ophthalmology). It has been indexed in SCIE, PubMed,
PubMed-Central, Chemical Abstracts, Scopus, EMBASE , and DOAJ. IJO JCR IF in 2017 is 1.166.
IJO was established in 2008, with editorial office in Xi’an, China. It is a monthly publication. General Scientific
Advisors include Prof. Hugh Taylor (President of ICO); Prof.Bruce Spivey (Immediate Past President of ICO);
Prof.Mark Tso (Ex-Vice President of ICO) and Prof.Daiming Fan (Academician and Vice President,
Chinese Academy of Engineering.
International Scientific Advisors include Prof. Serge Resnikoff (WHO Senior Speciatist for Prevention of
blindness), Prof. Chi-Chao Chan (National Eye Institute, USA) and Prof. Richard L Abbott (Ex-President of
AAO/PAAO) et al.
Honorary Editors-in-Chief: Prof. Li-Xin Xie(Academician of Chinese Academy of
Engineering/Honorary President of Chinese Ophthalmological Society); Prof. Dennis Lam (President of APAO) and
Prof. Xiao-Xin Li (Ex-President of Chinese Ophthalmological Society).
Chief Editor: Prof. Xiu-Wen Hu (President of IJO Press).
Editors-in-Chief: Prof. Yan-Nian Hui (Ex-Director, Eye Institute of Chinese PLA) and
Prof. George Chiou (Founding chief editor of Journal of Ocular Pharmacology & Therapeutics).
Associate Editors-in-Chief include:
Prof. Ning-Li Wang (President Elect of APAO);
Prof. Ke Yao (President of Chinese Ophthalmological Society) ;
Prof.William Smiddy (Bascom Palmer Eye instituteUSA) ;
Prof.Joel Schuman (President of Association of University Professors of Ophthalmology,USA);
Prof.Yizhi Liu (Vice President of Chinese Ophtlalmology Society);
Prof.Yu-Sheng Wang (Director of Eye Institute of Chinese PLA);
Prof.Ling-Yun Cheng (Director of Ocular Pharmacology, Shiley Eye Center, USA).
IJO accepts contributions in English from all over the world. It includes mainly original articles and review articles,
both basic and clinical papers.
Instruction is Welcome Contribution is Welcome Citation is Welcome
Cooperation organization
International Council of Ophthalmology(ICO), PubMed, PMC, American Academy of Ophthalmology, Asia-Pacific, Thomson Reuters, The Charlesworth Group, Crossref,Scopus,Publons, DOAJ etc.