Photodynamic and sonodynamic therapy synergy: mechanistic insights and cellular responses against glioblastoma multiforme.

IF 4.3 4区 医学 Q1 PHARMACOLOGY & PHARMACY Journal of Drug Targeting Pub Date : 2025-04-01 Epub Date: 2024-11-26 DOI:10.1080/1061186X.2024.2431676
Swati Sharma, Geetanjali B Gone, Parikshit Roychowdhury, Hyung Sik Kim, Sang Jeon Chung, Gowthmarajan Kuppusamy, Anindita De
{"title":"Photodynamic and sonodynamic therapy synergy: mechanistic insights and cellular responses against glioblastoma multiforme.","authors":"Swati Sharma, Geetanjali B Gone, Parikshit Roychowdhury, Hyung Sik Kim, Sang Jeon Chung, Gowthmarajan Kuppusamy, Anindita De","doi":"10.1080/1061186X.2024.2431676","DOIUrl":null,"url":null,"abstract":"<p><p>Glioblastoma multiforme (GBM), the most aggressive form of brain cancer, poses substantial challenges to effective treatment due to its complex and infiltrative nature, making it difficult to manage. Photodynamic therapy (PDT) and sonodynamic therapy (SDT), have emerged as promising individual treatment options against GBM due to their least-invasive approach. However, both PDT and SDT have drawbacks that require careful consideration. A combination therapy using light and sound waves has gained attention, offering new avenues to overcome challenges from individual therapies. Sono-photodynamic therapy (SPDT) has been used against various tumours. Researchers are considering SPDT as a favourable alternative to the conventional therapies for GBM. SPDT offers complementary mechanisms of action, including the production of ROS, disruption of cellular structures, and induction of apoptosis, leading to enhanced tumour cell death. This review gives an insight about PDT/SDT and their limitations in GBM treatment and the need for combination therapy. We try to unveil the process of SPDT and explore the mechanism behind improved SPDT-meditated cell death in GBM cells by focusing on the ROS-mediated cell response occurring as a result of SPDT and discussing current modifications in the existing sensitisers for their optimal use in SPDT for GBM therapy.</p>","PeriodicalId":15573,"journal":{"name":"Journal of Drug Targeting","volume":" ","pages":"458-472"},"PeriodicalIF":4.3000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Drug Targeting","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/1061186X.2024.2431676","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/26 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Glioblastoma multiforme (GBM), the most aggressive form of brain cancer, poses substantial challenges to effective treatment due to its complex and infiltrative nature, making it difficult to manage. Photodynamic therapy (PDT) and sonodynamic therapy (SDT), have emerged as promising individual treatment options against GBM due to their least-invasive approach. However, both PDT and SDT have drawbacks that require careful consideration. A combination therapy using light and sound waves has gained attention, offering new avenues to overcome challenges from individual therapies. Sono-photodynamic therapy (SPDT) has been used against various tumours. Researchers are considering SPDT as a favourable alternative to the conventional therapies for GBM. SPDT offers complementary mechanisms of action, including the production of ROS, disruption of cellular structures, and induction of apoptosis, leading to enhanced tumour cell death. This review gives an insight about PDT/SDT and their limitations in GBM treatment and the need for combination therapy. We try to unveil the process of SPDT and explore the mechanism behind improved SPDT-meditated cell death in GBM cells by focusing on the ROS-mediated cell response occurring as a result of SPDT and discussing current modifications in the existing sensitisers for their optimal use in SPDT for GBM therapy.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
光动力和声动力疗法的协同作用:对多形性胶质母细胞瘤的机理认识和细胞反应。
多形性胶质母细胞瘤(GBM)是侵袭性最强的脑癌,由于其复杂性和浸润性,给有效治疗带来了巨大挑战,使其难以控制。光动力疗法(PDT)和声动力疗法(SDT)因其微创方法而成为治疗多形性胶质瘤的有前途的个体治疗方案。然而,光动力疗法和声动力疗法都有需要仔细考虑的缺点。一种利用光波和声波的综合疗法受到了关注,它为克服单个疗法所带来的挑战提供了新的途径。声光动力疗法(SPDT)已被用于治疗各种肿瘤。研究人员正在考虑将 SPDT 作为治疗 GBM 的传统疗法的有利替代方案。SPDT 具有互补的作用机制,包括产生 ROS、破坏细胞结构和诱导细胞凋亡,从而增强肿瘤细胞的死亡。本综述深入探讨了 PDT/SDT 及其在 GBM 治疗中的局限性以及联合治疗的必要性。我们试图揭示 SPDT 的过程,并通过关注 SPDT 导致的 ROS 介导的细胞反应,探讨 SPDT 促进 GBM 细胞死亡背后的机制,同时讨论现有增敏剂在 SPDT 治疗 GBM 中的最佳应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.10
自引率
0.00%
发文量
165
审稿时长
2 months
期刊介绍: Journal of Drug Targeting publishes papers and reviews on all aspects of drug delivery and targeting for molecular and macromolecular drugs including the design and characterization of carrier systems (whether colloidal, protein or polymeric) for both vitro and/or in vivo applications of these drugs. Papers are not restricted to drugs delivered by way of a carrier, but also include studies on molecular and macromolecular drugs that are designed to target specific cellular or extra-cellular molecules. As such the journal publishes results on the activity, delivery and targeting of therapeutic peptides/proteins and nucleic acids including genes/plasmid DNA, gene silencing nucleic acids (e.g. small interfering (si)RNA, antisense oligonucleotides, ribozymes, DNAzymes), as well as aptamers, mononucleotides and monoclonal antibodies and their conjugates. The diagnostic application of targeting technologies as well as targeted delivery of diagnostic and imaging agents also fall within the scope of the journal. In addition, papers are sought on self-regulating systems, systems responsive to their environment and to external stimuli and those that can produce programmed, pulsed and otherwise complex delivery patterns.
期刊最新文献
Recent advances in PAMAM mediated nano-vehicles for targeted drug delivery in cancer therapy. Photodynamic and sonodynamic therapy synergy: mechanistic insights and cellular responses against glioblastoma multiforme. Advances in nano-delivery systems based on diagnosis and theranostics strategy for atherosclerosis. Development of in vitro and in vivo evaluation of mucoadhesive in-situ gel for intranasal delivery of vinpocetine. Selection of LRP1 ligand phage-displayed single domain antibody that transmigrates BBB.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1