Christopher Slade, Roberto M Benzo, Peter Washington
{"title":"Design Guidelines for Improving Mobile Sensing Data Collection: Prospective Mixed Methods Study.","authors":"Christopher Slade, Roberto M Benzo, Peter Washington","doi":"10.2196/55694","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Machine learning models often use passively recorded sensor data streams as inputs to train machine learning models that predict outcomes captured through ecological momentary assessments (EMA). Despite the growth of mobile data collection, challenges in obtaining proper authorization to send notifications, receive background events, and perform background tasks persist.</p><p><strong>Objective: </strong>We investigated challenges faced by mobile sensing apps in real-world settings in order to develop design guidelines. For active data, we compared 2 prompting strategies: setup prompting, where the app requests authorization during its initial run, and contextual prompting, where authorization is requested when an event or notification occurs. Additionally, we evaluated 2 passive data collection paradigms: collection during scheduled background tasks and persistent reminders that trigger passive data collection. We investigated the following research questions (RQs): (RQ1) how do setup prompting and contextual prompting affect scheduled notification delivery and the response rate of notification-initiated EMA? (RQ2) Which authorization paradigm, setup or contextual prompting, is more successful in leading users to grant authorization to receive background events? and (RQ3) Which polling-based method, persistent reminders or scheduled background tasks, completes more background sessions?</p><p><strong>Methods: </strong>We developed mobile sensing apps for iOS and Android devices and tested them through a 30-day user study asking college students (n=145) about their stress levels. Participants responded to a daily EMA question to test active data collection. The sensing apps collected background location events, polled for passive data with persistent reminders, and scheduled background tasks to test passive data collection.</p><p><strong>Results: </strong>For RQ1, setup and contextual prompting yielded no significant difference (ANOVA F<sub>1,144</sub>=0.0227; P=.88) in EMA compliance, with an average of 23.4 (SD 7.36) out of 30 assessments completed. However, qualitative analysis revealed that contextual prompting on iOS devices resulted in inconsistent notification deliveries. For RQ2, contextual prompting for background events was 55.5% (χ<sup>2</sup><sub>1</sub>=4.4; P=.04) more effective in gaining authorization. For RQ3, users demonstrated resistance to installing the persistent reminder, but when installed, the persistent reminder performed 226.5% more background sessions than traditional background tasks.</p><p><strong>Conclusions: </strong>We developed design guidelines for improving mobile sensing on consumer mobile devices based on our qualitative and quantitative results. Our qualitative results demonstrated that contextual prompts on iOS devices resulted in inconsistent notification deliveries, unlike setup prompting on Android devices. We therefore recommend using setup prompting for EMA when possible. We found that contextual prompting is more efficient for authorizing background events. We therefore recommend using contextual prompting for passive sensing. Finally, we conclude that developing a persistent reminder and requiring participants to install it provides an additional way to poll for sensor and user data and could improve data collection to support adaptive interventions powered by machine learning.</p>","PeriodicalId":16337,"journal":{"name":"Journal of Medical Internet Research","volume":"26 ","pages":"e55694"},"PeriodicalIF":5.8000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Internet Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2196/55694","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Machine learning models often use passively recorded sensor data streams as inputs to train machine learning models that predict outcomes captured through ecological momentary assessments (EMA). Despite the growth of mobile data collection, challenges in obtaining proper authorization to send notifications, receive background events, and perform background tasks persist.
Objective: We investigated challenges faced by mobile sensing apps in real-world settings in order to develop design guidelines. For active data, we compared 2 prompting strategies: setup prompting, where the app requests authorization during its initial run, and contextual prompting, where authorization is requested when an event or notification occurs. Additionally, we evaluated 2 passive data collection paradigms: collection during scheduled background tasks and persistent reminders that trigger passive data collection. We investigated the following research questions (RQs): (RQ1) how do setup prompting and contextual prompting affect scheduled notification delivery and the response rate of notification-initiated EMA? (RQ2) Which authorization paradigm, setup or contextual prompting, is more successful in leading users to grant authorization to receive background events? and (RQ3) Which polling-based method, persistent reminders or scheduled background tasks, completes more background sessions?
Methods: We developed mobile sensing apps for iOS and Android devices and tested them through a 30-day user study asking college students (n=145) about their stress levels. Participants responded to a daily EMA question to test active data collection. The sensing apps collected background location events, polled for passive data with persistent reminders, and scheduled background tasks to test passive data collection.
Results: For RQ1, setup and contextual prompting yielded no significant difference (ANOVA F1,144=0.0227; P=.88) in EMA compliance, with an average of 23.4 (SD 7.36) out of 30 assessments completed. However, qualitative analysis revealed that contextual prompting on iOS devices resulted in inconsistent notification deliveries. For RQ2, contextual prompting for background events was 55.5% (χ21=4.4; P=.04) more effective in gaining authorization. For RQ3, users demonstrated resistance to installing the persistent reminder, but when installed, the persistent reminder performed 226.5% more background sessions than traditional background tasks.
Conclusions: We developed design guidelines for improving mobile sensing on consumer mobile devices based on our qualitative and quantitative results. Our qualitative results demonstrated that contextual prompts on iOS devices resulted in inconsistent notification deliveries, unlike setup prompting on Android devices. We therefore recommend using setup prompting for EMA when possible. We found that contextual prompting is more efficient for authorizing background events. We therefore recommend using contextual prompting for passive sensing. Finally, we conclude that developing a persistent reminder and requiring participants to install it provides an additional way to poll for sensor and user data and could improve data collection to support adaptive interventions powered by machine learning.
期刊介绍:
The Journal of Medical Internet Research (JMIR) is a highly respected publication in the field of health informatics and health services. With a founding date in 1999, JMIR has been a pioneer in the field for over two decades.
As a leader in the industry, the journal focuses on digital health, data science, health informatics, and emerging technologies for health, medicine, and biomedical research. It is recognized as a top publication in these disciplines, ranking in the first quartile (Q1) by Impact Factor.
Notably, JMIR holds the prestigious position of being ranked #1 on Google Scholar within the "Medical Informatics" discipline.