Haotian Xin, Beining Yang, Yu Wang, Qunya Qi, Ling Wang, Yulong Jia, Weimin Zheng, Xin Chen, Fang Li, Chuchu Sun, Qian Chen, Jubao Du, Jie Lu, Nan Chen
{"title":"Altered Dynamic Brain Functional Network Connectivity Related to Visual Network in Spinal Cord Injury.","authors":"Haotian Xin, Beining Yang, Yu Wang, Qunya Qi, Ling Wang, Yulong Jia, Weimin Zheng, Xin Chen, Fang Li, Chuchu Sun, Qian Chen, Jubao Du, Jie Lu, Nan Chen","doi":"10.1089/neu.2024.0318","DOIUrl":null,"url":null,"abstract":"<p><p>Visual feedback training (VFT) plays an important role in the motor rehabilitation of patients with spinal cord injury (SCI). However, the neural mechanisms are unclear. We aimed to investigate the changes in dynamic functional network connectivity (FNC) related to visual networks (VN) in patients with SCI and to reveal the neural mechanism of VFT promoting motor function rehabilitation. Dynamic FNC and the sliding window method were performed in 18 complete SCI (CSCI), 16 patients with incomplete SCI (ISCI), and 42 healthy controls (HCs). Then, k-mean clustering was implemented to identify discrete FNC states, and temporal properties were computed. The correlations between these dynamic features and neurological parameters in all patients with SCI were calculated. The majority of aberrant FNC was manifested between VN and executive control network (ECN). In addition, compared with HCs, temporal metrics derived from state transition vectors were decreased in patients with CSCI including the mean dwell time and the fraction of time spent in state 3. Furthermore, the disrupted FNC between salience network and ECN in state 2 and the number of transitions were all positively correlated with neurological scores in patients with SCI. Our findings indicated that SCI could result in VN-related FNC alterations, revealing the possible mechanism for VFT in rehabilitation of patients with SCI and increasing the training efficacy and promoting rehabilitation for SCI.</p>","PeriodicalId":16512,"journal":{"name":"Journal of neurotrauma","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neurotrauma","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/neu.2024.0318","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Visual feedback training (VFT) plays an important role in the motor rehabilitation of patients with spinal cord injury (SCI). However, the neural mechanisms are unclear. We aimed to investigate the changes in dynamic functional network connectivity (FNC) related to visual networks (VN) in patients with SCI and to reveal the neural mechanism of VFT promoting motor function rehabilitation. Dynamic FNC and the sliding window method were performed in 18 complete SCI (CSCI), 16 patients with incomplete SCI (ISCI), and 42 healthy controls (HCs). Then, k-mean clustering was implemented to identify discrete FNC states, and temporal properties were computed. The correlations between these dynamic features and neurological parameters in all patients with SCI were calculated. The majority of aberrant FNC was manifested between VN and executive control network (ECN). In addition, compared with HCs, temporal metrics derived from state transition vectors were decreased in patients with CSCI including the mean dwell time and the fraction of time spent in state 3. Furthermore, the disrupted FNC between salience network and ECN in state 2 and the number of transitions were all positively correlated with neurological scores in patients with SCI. Our findings indicated that SCI could result in VN-related FNC alterations, revealing the possible mechanism for VFT in rehabilitation of patients with SCI and increasing the training efficacy and promoting rehabilitation for SCI.
期刊介绍:
Journal of Neurotrauma is the flagship, peer-reviewed publication for reporting on the latest advances in both the clinical and laboratory investigation of traumatic brain and spinal cord injury. The Journal focuses on the basic pathobiology of injury to the central nervous system, while considering preclinical and clinical trials targeted at improving both the early management and long-term care and recovery of traumatically injured patients. This is the essential journal publishing cutting-edge basic and translational research in traumatically injured human and animal studies, with emphasis on neurodegenerative disease research linked to CNS trauma.