Ning Ai, Yan Zhang, Jing Yang, Yu Zhang, Xuejing Zhao, Huifen Feng
{"title":"Genetically predicted blood metabolites mediate the association between circulating immune cells and severe COVID-19: A Mendelian randomization study.","authors":"Ning Ai, Yan Zhang, Jing Yang, Yu Zhang, Xuejing Zhao, Huifen Feng","doi":"10.1097/MD.0000000000040509","DOIUrl":null,"url":null,"abstract":"<p><p>Investigating the causal relationship between circulating immune cells, blood metabolites, and severe COVID-19 and revealing the role of blood metabolite-mediated circulating immune cells in disease onset and progression. Genetic variation data of 731 circulating immune cells, 1400 blood metabolites, and severe COVID-19 from genome-wide association study open-access database (https://gwas.mrcieu.ac.uk) were used as instrumental variables for bidirectional and two-step Mendelian randomization analysis. The study identified 11 circulating immune cells with unidirectional causality to severe COVID-19. Two-step Mendelian randomization analysis showed 10 blood metabolites were causally associated with severe COVID-19, and blood Myristate and Citrulline to phosphate ratio mediated the association of circulating effector memory double negative % DN and CD8dim natural killer T cell % T cells, respectively, with severe COVID-19 (Myristate mediated effect ratio was 10.20%, P = .011; Citrulline to phosphate ratio mediated effect ratio was -9.21%, P = .017). This study provides genetic evidence assessing the causal relationship between circulating immune cells, blood metabolites, and severe COVID-19, elucidates the role of blood metabolite-mediated circulating immune cells in severe COVID-19 development, and offers new insights into severe COVID-19 etiology and related preventive and targeted therapeutic strategies.</p>","PeriodicalId":18549,"journal":{"name":"Medicine","volume":"103 46","pages":"e40509"},"PeriodicalIF":1.3000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11575977/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/MD.0000000000040509","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0
Abstract
Investigating the causal relationship between circulating immune cells, blood metabolites, and severe COVID-19 and revealing the role of blood metabolite-mediated circulating immune cells in disease onset and progression. Genetic variation data of 731 circulating immune cells, 1400 blood metabolites, and severe COVID-19 from genome-wide association study open-access database (https://gwas.mrcieu.ac.uk) were used as instrumental variables for bidirectional and two-step Mendelian randomization analysis. The study identified 11 circulating immune cells with unidirectional causality to severe COVID-19. Two-step Mendelian randomization analysis showed 10 blood metabolites were causally associated with severe COVID-19, and blood Myristate and Citrulline to phosphate ratio mediated the association of circulating effector memory double negative % DN and CD8dim natural killer T cell % T cells, respectively, with severe COVID-19 (Myristate mediated effect ratio was 10.20%, P = .011; Citrulline to phosphate ratio mediated effect ratio was -9.21%, P = .017). This study provides genetic evidence assessing the causal relationship between circulating immune cells, blood metabolites, and severe COVID-19, elucidates the role of blood metabolite-mediated circulating immune cells in severe COVID-19 development, and offers new insights into severe COVID-19 etiology and related preventive and targeted therapeutic strategies.
期刊介绍:
Medicine is now a fully open access journal, providing authors with a distinctive new service offering continuous publication of original research across a broad spectrum of medical scientific disciplines and sub-specialties.
As an open access title, Medicine will continue to provide authors with an established, trusted platform for the publication of their work. To ensure the ongoing quality of Medicine’s content, the peer-review process will only accept content that is scientifically, technically and ethically sound, and in compliance with standard reporting guidelines.