Juan Patiño-Galindo, Adolfo García-Sastre, Jens H Kuhn, Raul Rabadan, Gustavo Palacios
{"title":"Recombination across distant coronavirid species and genera is a rare event with distinct genomic features.","authors":"Juan Patiño-Galindo, Adolfo García-Sastre, Jens H Kuhn, Raul Rabadan, Gustavo Palacios","doi":"10.1128/jvi.01100-24","DOIUrl":null,"url":null,"abstract":"<p><p>Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2; family <i>Coronaviridae</i>, genus <i>Betacoronavirus</i>, subgenus <i>Sarbecovirus</i>) has caused millions of deaths, prompting a need for better understanding of coronavirid emergence and spillover to humans. As an evaluation of how some features of SARS-CoV-2, unique among sarbecoviruses, may have been acquired from related viruses, we conducted phylogenetic and recombination analyses to compare the frequency of recombination among coronavirids across vs within genera, subgenera, and species. Among known betacoronaviruses, we identified 199 (183 intraspecies, 16 interspecies, but no intersubgenera) recombination events. Phylogenetic analyses revealed that the ancestry of interspecies events was limited and less prone to affect 5' regions of coronavirid genome open reading frame 1 (ORF1) than intraspecies events. On the contrary, interspecies events were significantly more prone to impact the 3' end (ORF6-ORF8 and the nucleocapsid protein [<i>N</i>] ORF), suggesting the existence of region-specific constraints on recombination. This work substantiated that recombination among betacoronaviruses is limited by the genome similarity between their parental viruses. We conclude that SARS-CoV-2 likely acquired unique features through recombination with closely related circulating sarbecoviruses (most likely from the same species) that co-existed geographically.</p><p><strong>Importance: </strong>Understanding the evolutionary events that led to SARS-CoV-2 emergence, spillover, and spread is crucial to prevent, or at least be prepared for, the same type of occurrence in the future. Given that SARS-CoV-2 has some characteristics not found in other closely related viruses, we aimed to systematically assess how likely these unique features may have been acquired through recombination. We found that, although recombination is a frequent phenomenon among betacoronaviruses, it is mostly limited to closely related members of the same species. Therefore, we conclude that the most likely scenario involved feature acquisition from recombination with a closely related virus that was circulating in a geographically overlapping area or through a different biological process, but not recombination from a virus of a different species, genus, or subgenus.</p>","PeriodicalId":17583,"journal":{"name":"Journal of Virology","volume":" ","pages":"e0110024"},"PeriodicalIF":4.0000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Virology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1128/jvi.01100-24","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"VIROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2; family Coronaviridae, genus Betacoronavirus, subgenus Sarbecovirus) has caused millions of deaths, prompting a need for better understanding of coronavirid emergence and spillover to humans. As an evaluation of how some features of SARS-CoV-2, unique among sarbecoviruses, may have been acquired from related viruses, we conducted phylogenetic and recombination analyses to compare the frequency of recombination among coronavirids across vs within genera, subgenera, and species. Among known betacoronaviruses, we identified 199 (183 intraspecies, 16 interspecies, but no intersubgenera) recombination events. Phylogenetic analyses revealed that the ancestry of interspecies events was limited and less prone to affect 5' regions of coronavirid genome open reading frame 1 (ORF1) than intraspecies events. On the contrary, interspecies events were significantly more prone to impact the 3' end (ORF6-ORF8 and the nucleocapsid protein [N] ORF), suggesting the existence of region-specific constraints on recombination. This work substantiated that recombination among betacoronaviruses is limited by the genome similarity between their parental viruses. We conclude that SARS-CoV-2 likely acquired unique features through recombination with closely related circulating sarbecoviruses (most likely from the same species) that co-existed geographically.
Importance: Understanding the evolutionary events that led to SARS-CoV-2 emergence, spillover, and spread is crucial to prevent, or at least be prepared for, the same type of occurrence in the future. Given that SARS-CoV-2 has some characteristics not found in other closely related viruses, we aimed to systematically assess how likely these unique features may have been acquired through recombination. We found that, although recombination is a frequent phenomenon among betacoronaviruses, it is mostly limited to closely related members of the same species. Therefore, we conclude that the most likely scenario involved feature acquisition from recombination with a closely related virus that was circulating in a geographically overlapping area or through a different biological process, but not recombination from a virus of a different species, genus, or subgenus.
期刊介绍:
Journal of Virology (JVI) explores the nature of the viruses of animals, archaea, bacteria, fungi, plants, and protozoa. We welcome papers on virion structure and assembly, viral genome replication and regulation of gene expression, genetic diversity and evolution, virus-cell interactions, cellular responses to infection, transformation and oncogenesis, gene delivery, viral pathogenesis and immunity, and vaccines and antiviral agents.