Zhaoqing Xi , Ling Shu , Lingling Xiao , Xuesheng Fang , Mingyan Dai , Jing Wang , Yuan Wu , Junxia Zhang , Mingwei Bao
{"title":"Macrophage NLRP3 inflammasome mediates the effects of sympathetic nerve on cardiac remodeling in obese rats","authors":"Zhaoqing Xi , Ling Shu , Lingling Xiao , Xuesheng Fang , Mingyan Dai , Jing Wang , Yuan Wu , Junxia Zhang , Mingwei Bao","doi":"10.1016/j.mce.2024.112417","DOIUrl":null,"url":null,"abstract":"<div><div>Obesity-associated cardiac remodeling is characterized by cardiac sympathetic nerve over-activation and pro-inflammatory macrophage infiltration. We identified norepinephrine (NE), a sympathetic neurotransmitter, as a pro-inflammatory effector to activate macrophage NLRP3 inflammasome, which contributed to cardiac inflammation. In vivo, Sprague-Dawley (SD) rats were fed a high-fat diet (HFD) for 12 weeks to establish obese rat models. Obese rats exhibited marked cardiac hypertrophy compared to normal rats. The expression of NLRP3 and interleukin (IL)-1β was upregulated, accompanied by CD68<sup>+</sup>NLRP3<sup>+</sup> macrophage infiltration in the hearts of the obese rats. The obese rats also showed increased sympathetic nerve activity. β-adrenergic receptor (AR) inhibition mitigated these changes. In vitro, sympathetic neurotransmitter NE significantly exacerbated palmitic acid (PA)-induced macrophage polarization toward pro-inflammatory type and NLRP3 inflammasome activation in THP-1 macrophages. It was further found that the pro-inflammatory role of NE is dependent on the activation of protein kinase A (PKA) and subsequently inhibition of β-arrestin2, which is an important regulator of the nuclear factor-kappa B (NF-κB) pathway.</div><div>This study identifies the neuro-immune axis as an important mediator in obesity-associated cardiac remodeling. Targeting the neuro-immune system may open therapeutic opportunities for the treatment of cardiac remodeling in obesity.</div></div>","PeriodicalId":18707,"journal":{"name":"Molecular and Cellular Endocrinology","volume":"596 ","pages":"Article 112417"},"PeriodicalIF":3.8000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular and Cellular Endocrinology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0303720724002739","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Obesity-associated cardiac remodeling is characterized by cardiac sympathetic nerve over-activation and pro-inflammatory macrophage infiltration. We identified norepinephrine (NE), a sympathetic neurotransmitter, as a pro-inflammatory effector to activate macrophage NLRP3 inflammasome, which contributed to cardiac inflammation. In vivo, Sprague-Dawley (SD) rats were fed a high-fat diet (HFD) for 12 weeks to establish obese rat models. Obese rats exhibited marked cardiac hypertrophy compared to normal rats. The expression of NLRP3 and interleukin (IL)-1β was upregulated, accompanied by CD68+NLRP3+ macrophage infiltration in the hearts of the obese rats. The obese rats also showed increased sympathetic nerve activity. β-adrenergic receptor (AR) inhibition mitigated these changes. In vitro, sympathetic neurotransmitter NE significantly exacerbated palmitic acid (PA)-induced macrophage polarization toward pro-inflammatory type and NLRP3 inflammasome activation in THP-1 macrophages. It was further found that the pro-inflammatory role of NE is dependent on the activation of protein kinase A (PKA) and subsequently inhibition of β-arrestin2, which is an important regulator of the nuclear factor-kappa B (NF-κB) pathway.
This study identifies the neuro-immune axis as an important mediator in obesity-associated cardiac remodeling. Targeting the neuro-immune system may open therapeutic opportunities for the treatment of cardiac remodeling in obesity.
期刊介绍:
Molecular and Cellular Endocrinology was established in 1974 to meet the demand for integrated publication on all aspects related to the genetic and biochemical effects, synthesis and secretions of extracellular signals (hormones, neurotransmitters, etc.) and to the understanding of cellular regulatory mechanisms involved in hormonal control.