{"title":"High energetic cost of color change in octopuses.","authors":"Sofie C Sonner, Kirt L Onthank","doi":"10.1073/pnas.2408386121","DOIUrl":null,"url":null,"abstract":"<p><p>For many animals, color change is a critical adaptive mechanism believed to carry a substantial energetic cost. Yet, no study to date has directly measured the energy expenditure associated with this process. We examined the metabolic cost of color change in octopuses by measuring oxygen consumption in samples of excised octopus skin during periods of chromatophore expansion and contraction and then modeled metabolic demand over the whole octopus as a function of octopus mass. The metabolic demand of the fully activated chromatophore system is nearly as great as an octopus's resting metabolic rate. This high metabolic cost carries ecological and evolutionary implications, including selective pressures in octopuses that may influence the adoption of nocturnal lifestyles, the use of dens, the reduction of the chromatophore system in deep-sea species, and metabolic trade-offs associated with foraging.</p>","PeriodicalId":20548,"journal":{"name":"Proceedings of the National Academy of Sciences of the United States of America","volume":"121 48","pages":"e2408386121"},"PeriodicalIF":9.4000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of the United States of America","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1073/pnas.2408386121","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/18 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
For many animals, color change is a critical adaptive mechanism believed to carry a substantial energetic cost. Yet, no study to date has directly measured the energy expenditure associated with this process. We examined the metabolic cost of color change in octopuses by measuring oxygen consumption in samples of excised octopus skin during periods of chromatophore expansion and contraction and then modeled metabolic demand over the whole octopus as a function of octopus mass. The metabolic demand of the fully activated chromatophore system is nearly as great as an octopus's resting metabolic rate. This high metabolic cost carries ecological and evolutionary implications, including selective pressures in octopuses that may influence the adoption of nocturnal lifestyles, the use of dens, the reduction of the chromatophore system in deep-sea species, and metabolic trade-offs associated with foraging.
期刊介绍:
The Proceedings of the National Academy of Sciences (PNAS), a peer-reviewed journal of the National Academy of Sciences (NAS), serves as an authoritative source for high-impact, original research across the biological, physical, and social sciences. With a global scope, the journal welcomes submissions from researchers worldwide, making it an inclusive platform for advancing scientific knowledge.