Stanislav G Kozmin, Margaret Dominska, Robert J Kokoska, Thomas D Petes
{"title":"A tale of two serines: the effects of histone H2A mutations S122A and S129A on chromosome non-disjunction in Saccharomyces cerevisiae.","authors":"Stanislav G Kozmin, Margaret Dominska, Robert J Kokoska, Thomas D Petes","doi":"10.1093/genetics/iyae194","DOIUrl":null,"url":null,"abstract":"<p><p>Near the C-terminus of histone H2A in the yeast S. cerevisiae, there are two serines (S122 and S129) that are targets of phosphorylation. The phosphorylation of Serine 129 in response to DNA damage is dependent on the Tel1 and Mec1 kinases. In S. pombe and S. cerevisiae, the phosphorylation of Serine 122 is dependent on the Bub1 kinase, and S. pombe strains with an alanine mutation of this serine have elevated levels of lagging chromosomes in mitosis. Strains that lack both Tel1 and Mec1 in S. cerevisiae have very elevated rates of non-disjunction. To clarify the functional importance of phosphorylation of serines 122 and 129 in H2A, we measured chromosome loss rates in single mutant strains and double mutant combinations. We also examined the interaction of mutations of BUB1, TEL1, and MEC1 in combination with mutations of serine 122 and 129 in H2A. We conclude that the phosphorylation state of S129 has no effect on chromosome disjunction whereas mutations that inactivate Bub1 or a S122A mutation in the histone H2A greatly elevate the rate of chromosome non-disjunction. Based on this analysis, we suggest that Bub1 exerts its primary effect on chromosome disjunction by phosphorylating S122 of histone H2A. However, Tel1, Mec1 and Bub1 also functionally redundant in a second pathway affecting chromosome disjunction that is at least partially independent of phosphorylation of S122 of H2A.</p>","PeriodicalId":48925,"journal":{"name":"Genetics","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/genetics/iyae194","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Near the C-terminus of histone H2A in the yeast S. cerevisiae, there are two serines (S122 and S129) that are targets of phosphorylation. The phosphorylation of Serine 129 in response to DNA damage is dependent on the Tel1 and Mec1 kinases. In S. pombe and S. cerevisiae, the phosphorylation of Serine 122 is dependent on the Bub1 kinase, and S. pombe strains with an alanine mutation of this serine have elevated levels of lagging chromosomes in mitosis. Strains that lack both Tel1 and Mec1 in S. cerevisiae have very elevated rates of non-disjunction. To clarify the functional importance of phosphorylation of serines 122 and 129 in H2A, we measured chromosome loss rates in single mutant strains and double mutant combinations. We also examined the interaction of mutations of BUB1, TEL1, and MEC1 in combination with mutations of serine 122 and 129 in H2A. We conclude that the phosphorylation state of S129 has no effect on chromosome disjunction whereas mutations that inactivate Bub1 or a S122A mutation in the histone H2A greatly elevate the rate of chromosome non-disjunction. Based on this analysis, we suggest that Bub1 exerts its primary effect on chromosome disjunction by phosphorylating S122 of histone H2A. However, Tel1, Mec1 and Bub1 also functionally redundant in a second pathway affecting chromosome disjunction that is at least partially independent of phosphorylation of S122 of H2A.
期刊介绍:
GENETICS is published by the Genetics Society of America, a scholarly society that seeks to deepen our understanding of the living world by advancing our understanding of genetics. Since 1916, GENETICS has published high-quality, original research presenting novel findings bearing on genetics and genomics. The journal publishes empirical studies of organisms ranging from microbes to humans, as well as theoretical work.
While it has an illustrious history, GENETICS has changed along with the communities it serves: it is not your mentor''s journal.
The editors make decisions quickly – in around 30 days – without sacrificing the excellence and scholarship for which the journal has long been known. GENETICS is a peer reviewed, peer-edited journal, with an international reach and increasing visibility and impact. All editorial decisions are made through collaboration of at least two editors who are practicing scientists.
GENETICS is constantly innovating: expanded types of content include Reviews, Commentary (current issues of interest to geneticists), Perspectives (historical), Primers (to introduce primary literature into the classroom), Toolbox Reviews, plus YeastBook, FlyBook, and WormBook (coming spring 2016). For particularly time-sensitive results, we publish Communications. As part of our mission to serve our communities, we''ve published thematic collections, including Genomic Selection, Multiparental Populations, Mouse Collaborative Cross, and the Genetics of Sex.