Addressing catastrophic forgetting in payload parameter identification using incremental ensemble learning.

IF 2.9 Q2 ROBOTICS Frontiers in Robotics and AI Pub Date : 2024-11-04 eCollection Date: 2024-01-01 DOI:10.3389/frobt.2024.1470163
Wael Taie, Khaled ElGeneidy, Ali Al-Yacoub, Ronglei Sun
{"title":"Addressing catastrophic forgetting in payload parameter identification using incremental ensemble learning.","authors":"Wael Taie, Khaled ElGeneidy, Ali Al-Yacoub, Ronglei Sun","doi":"10.3389/frobt.2024.1470163","DOIUrl":null,"url":null,"abstract":"<p><p>Collaborative robots (cobots) are increasingly integrated into Industry 4.0 dynamic manufacturing environments that require frequent system reconfiguration due to changes in cobot paths and payloads. This necessitates fast methods for identifying payload inertial parameters to compensate the cobot controller and ensure precise and safe operation. Our prior work used Incremental Ensemble Model (IEM) to identify payload parameters, eliminating the need for an excitation path and thus removing the separate identification step. However, this approach suffers from catastrophic forgetting. This paper introduces a novel incremental ensemble learning method that addresses the problem of catastrophic forgetting by adding a new weak learner to the ensemble model for each new training bag. Moreover, it proposes a new classification model that assists the ensemble model in identifying which weak learner provides the most accurate estimation for new input data. The proposed method incrementally updates the identification model while the cobot navigates any task path, maintaining accuracy on old weak learner even after updating with new data. Validation performed on the Franka Emika cobot showcases the model's superior accuracy and adaptability, effectively eliminating the problem of catastrophic forgetting.</p>","PeriodicalId":47597,"journal":{"name":"Frontiers in Robotics and AI","volume":"11 ","pages":"1470163"},"PeriodicalIF":2.9000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11570578/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Robotics and AI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/frobt.2024.1470163","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Collaborative robots (cobots) are increasingly integrated into Industry 4.0 dynamic manufacturing environments that require frequent system reconfiguration due to changes in cobot paths and payloads. This necessitates fast methods for identifying payload inertial parameters to compensate the cobot controller and ensure precise and safe operation. Our prior work used Incremental Ensemble Model (IEM) to identify payload parameters, eliminating the need for an excitation path and thus removing the separate identification step. However, this approach suffers from catastrophic forgetting. This paper introduces a novel incremental ensemble learning method that addresses the problem of catastrophic forgetting by adding a new weak learner to the ensemble model for each new training bag. Moreover, it proposes a new classification model that assists the ensemble model in identifying which weak learner provides the most accurate estimation for new input data. The proposed method incrementally updates the identification model while the cobot navigates any task path, maintaining accuracy on old weak learner even after updating with new data. Validation performed on the Franka Emika cobot showcases the model's superior accuracy and adaptability, effectively eliminating the problem of catastrophic forgetting.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用增量集合学习解决有效载荷参数识别中的灾难性遗忘。
协作机器人(cobot)越来越多地集成到工业 4.0 的动态制造环境中,由于 cobot 路径和有效载荷的变化,需要频繁地重新配置系统。这就需要快速识别有效载荷惯性参数的方法,以补偿 cobot 控制器,确保精确和安全的操作。我们之前的工作使用增量集合模型(IEM)来识别有效载荷参数,无需激励路径,从而省去了单独的识别步骤。然而,这种方法存在灾难性遗忘。本文介绍了一种新颖的增量集合学习方法,通过为每个新训练包的集合模型添加一个新的弱学习器来解决灾难性遗忘问题。此外,它还提出了一个新的分类模型,帮助集合模型识别哪个弱学习器能为新输入数据提供最准确的估计。在 cobot 浏览任何任务路径时,所提出的方法都会增量更新识别模型,即使在使用新数据更新后,也能保持旧弱学习器的准确性。在 Franka Emika cobot 上进行的验证表明,该模型具有出色的准确性和适应性,有效消除了灾难性遗忘问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.50
自引率
5.90%
发文量
355
审稿时长
14 weeks
期刊介绍: Frontiers in Robotics and AI publishes rigorously peer-reviewed research covering all theory and applications of robotics, technology, and artificial intelligence, from biomedical to space robotics.
期刊最新文献
Advanced robotics for automated EV battery testing using electrochemical impedance spectroscopy. Pig tongue soft robot mimicking intrinsic tongue muscle structure. A fast monocular 6D pose estimation method for textureless objects based on perceptual hashing and template matching. Semantic segmentation using synthetic images of underwater marine-growth. A comparative psychological evaluation of a robotic avatar in Dubai and Japan.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1