{"title":"Stochastic force generation in an isometric binary mechanical system.","authors":"Vidya Murthy, Josh E Baker","doi":"10.1085/jgp.202313493","DOIUrl":null,"url":null,"abstract":"<p><p>Accurate models of muscle contraction are necessary for understanding muscle performance and the molecular modifications that enhance it (e.g., therapeutics, posttranslational modifications, etc.). As a thermal system containing millions of randomly fluctuating atoms that on the thermal scale of a muscle fiber generate unidirectional force and power output, muscle mechanics are constrained by the laws of thermodynamics. According to a thermodynamic muscle model, muscle's power stroke occurs with the shortening of an entropic spring consisting of an ensemble of force-generating myosin motor switches, each induced by actin binding and gated by inorganic phosphate release. This model differs fundamentally from conventional molecular power stroke models that assign springs to myosin motors in that it is physically impossible to describe an entropic spring in terms of the springs of its molecular constituents. A simple two-state thermodynamic model (a binary mechanical system) accurately accounts for muscle force-velocity relationships, force transients following rapid mechanical and chemical perturbations, and a thermodynamic work loop. Because this model transforms our understanding of muscle contraction, it must continue to be tested. Here, we show that a simple stochastic kinetic simulation of isometric muscle force predicts four phases of a force-generating loop that bifurcates between periodic and stochastic beating through mechanisms framed by two thermodynamic equations. We compare these model predictions with experimental data including observations of spontaneous oscillatory contractions (SPOCs) in muscles and periodic force generation in small myosin ensembles.</p>","PeriodicalId":54828,"journal":{"name":"Journal of General Physiology","volume":"156 12","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of General Physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1085/jgp.202313493","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/19 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Accurate models of muscle contraction are necessary for understanding muscle performance and the molecular modifications that enhance it (e.g., therapeutics, posttranslational modifications, etc.). As a thermal system containing millions of randomly fluctuating atoms that on the thermal scale of a muscle fiber generate unidirectional force and power output, muscle mechanics are constrained by the laws of thermodynamics. According to a thermodynamic muscle model, muscle's power stroke occurs with the shortening of an entropic spring consisting of an ensemble of force-generating myosin motor switches, each induced by actin binding and gated by inorganic phosphate release. This model differs fundamentally from conventional molecular power stroke models that assign springs to myosin motors in that it is physically impossible to describe an entropic spring in terms of the springs of its molecular constituents. A simple two-state thermodynamic model (a binary mechanical system) accurately accounts for muscle force-velocity relationships, force transients following rapid mechanical and chemical perturbations, and a thermodynamic work loop. Because this model transforms our understanding of muscle contraction, it must continue to be tested. Here, we show that a simple stochastic kinetic simulation of isometric muscle force predicts four phases of a force-generating loop that bifurcates between periodic and stochastic beating through mechanisms framed by two thermodynamic equations. We compare these model predictions with experimental data including observations of spontaneous oscillatory contractions (SPOCs) in muscles and periodic force generation in small myosin ensembles.
期刊介绍:
General physiology is the study of biological mechanisms through analytical investigations, which decipher the molecular and cellular mechanisms underlying biological function at all levels of organization.
The mission of Journal of General Physiology (JGP) is to publish mechanistic and quantitative molecular and cellular physiology of the highest quality, to provide a best-in-class author experience, and to nurture future generations of independent researchers. The major emphasis is on physiological problems at the cellular and molecular level.