Tripartite motif 22 interacts with protein phosphatase magnesium-dependent 1 A to aggravate radiation-induced epithelial-mesenchymal transition and fibrogenesis in lung epithelial cells.
Jinhua Lu, Menglei Wang, Yeyue Zhou, Yazhen Zhong, Shengyou Lin
{"title":"Tripartite motif 22 interacts with protein phosphatase magnesium-dependent 1 A to aggravate radiation-induced epithelial-mesenchymal transition and fibrogenesis in lung epithelial cells.","authors":"Jinhua Lu, Menglei Wang, Yeyue Zhou, Yazhen Zhong, Shengyou Lin","doi":"10.1016/j.tiv.2024.105972","DOIUrl":null,"url":null,"abstract":"<p><p>Radiation-induced lung injury (RILI) is the damage to lung tissue caused by radiation. Epithelial-mesenchymal transition (EMT) and fibrogenesis in radiated lung epithelial cells play critical roles in RILI. Tripartite motif-containing (TRIM) family proteins have been shown to be involved in fibrotic diseases, but whether TRIM22 plays a role in RILI and relative underlying mechanism remain unexplored. Here, we reported a unique comprehensive analysis of the impact of TRIM22 on radiation-induced EMT and fibrogenesis in A549 and BEAS-2B cells. Cell viability and proliferation were measured by Cell-Counting Kit (CCK)-8 and colony formation assays. The interaction between TRIM22 and protein phosphatase magnesium-dependent 1 A (PPM1A) was validated using co-immunoprecipitation. A chromatin immunoprecipitation assay was used to verify the interaction between SMAD3 and TRIM22 promoter. Cell viability and proliferation were decreased by 8 Gy raddition. TRIM22 was elevated in a dose- and time-dependent manner after radiation, and its knockdown reduced EMT and fibrogenesis. TRIM22 could interact with PPM1A and promote its ubiquitination to activate the TGF-β1/Smad pathway. The overexpression of PPM1A abolished TRIM22-mediated EMT and fibrogenesis. Meanwhile, SMAD3 could bind to the TRIM22 promoter to elevate its expression. This study revealed a novel TRIM22/PPM1A/Smad3 signaling pathway that contributes to the raddition-induced EMT and fibrogenesis, which would provide novel targets and strategies for treating RILI.</p>","PeriodicalId":54423,"journal":{"name":"Toxicology in Vitro","volume":" ","pages":"105972"},"PeriodicalIF":2.6000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicology in Vitro","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.tiv.2024.105972","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Radiation-induced lung injury (RILI) is the damage to lung tissue caused by radiation. Epithelial-mesenchymal transition (EMT) and fibrogenesis in radiated lung epithelial cells play critical roles in RILI. Tripartite motif-containing (TRIM) family proteins have been shown to be involved in fibrotic diseases, but whether TRIM22 plays a role in RILI and relative underlying mechanism remain unexplored. Here, we reported a unique comprehensive analysis of the impact of TRIM22 on radiation-induced EMT and fibrogenesis in A549 and BEAS-2B cells. Cell viability and proliferation were measured by Cell-Counting Kit (CCK)-8 and colony formation assays. The interaction between TRIM22 and protein phosphatase magnesium-dependent 1 A (PPM1A) was validated using co-immunoprecipitation. A chromatin immunoprecipitation assay was used to verify the interaction between SMAD3 and TRIM22 promoter. Cell viability and proliferation were decreased by 8 Gy raddition. TRIM22 was elevated in a dose- and time-dependent manner after radiation, and its knockdown reduced EMT and fibrogenesis. TRIM22 could interact with PPM1A and promote its ubiquitination to activate the TGF-β1/Smad pathway. The overexpression of PPM1A abolished TRIM22-mediated EMT and fibrogenesis. Meanwhile, SMAD3 could bind to the TRIM22 promoter to elevate its expression. This study revealed a novel TRIM22/PPM1A/Smad3 signaling pathway that contributes to the raddition-induced EMT and fibrogenesis, which would provide novel targets and strategies for treating RILI.
期刊介绍:
Toxicology in Vitro publishes original research papers and reviews on the application and use of in vitro systems for assessing or predicting the toxic effects of chemicals and elucidating their mechanisms of action. These in vitro techniques include utilizing cell or tissue cultures, isolated cells, tissue slices, subcellular fractions, transgenic cell cultures, and cells from transgenic organisms, as well as in silico modelling. The Journal will focus on investigations that involve the development and validation of new in vitro methods, e.g. for prediction of toxic effects based on traditional and in silico modelling; on the use of methods in high-throughput toxicology and pharmacology; elucidation of mechanisms of toxic action; the application of genomics, transcriptomics and proteomics in toxicology, as well as on comparative studies that characterise the relationship between in vitro and in vivo findings. The Journal strongly encourages the submission of manuscripts that focus on the development of in vitro methods, their practical applications and regulatory use (e.g. in the areas of food components cosmetics, pharmaceuticals, pesticides, and industrial chemicals). Toxicology in Vitro discourages papers that record reporting on toxicological effects from materials, such as plant extracts or herbal medicines, that have not been chemically characterized.