Chengmiao Liu, Qingxiang Pei, Ziyu Cui, Zelu Song, Gaochao Zhao, Yang Yang
{"title":"Isogeometric boundary element method analysis for dielectric target shape optimization in electromagnetic scattering.","authors":"Chengmiao Liu, Qingxiang Pei, Ziyu Cui, Zelu Song, Gaochao Zhao, Yang Yang","doi":"10.1177/00368504241294114","DOIUrl":null,"url":null,"abstract":"<p><p>In order to optimize the overall form of electromagnetic scattering in two-dimensional dielectric media, this work offers a frequency-domain boundary element method based on isogeometric analysis. The Isogeometric boundary element method (IGABEM) is used to guarantee geometric correctness during optimization and prevent over-refinement of the mesh. Non-uniform rational B-splines are used to discretize the boundary integrals of the model, enabling rapid numerical computation while ensuring high accuracy. Furthermore, as an alternative model for electromagnetic scattering shape optimization issues, a gray wolf optimizer-based back-propagation neural network (GWO-ANN) is created, with radar cross-section (RCS) as the objective function. Finally, the GWO-ANN is used as a surrogate model for shape optimization in multi-frequency electromagnetic scattering problems with the RCS as the objective function. In computational examples, this algorithm efficiently and accurately solves electromagnetic scattering problems under multiple frequencies.</p>","PeriodicalId":56061,"journal":{"name":"Science Progress","volume":"107 4","pages":"368504241294114"},"PeriodicalIF":2.6000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Progress","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1177/00368504241294114","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
In order to optimize the overall form of electromagnetic scattering in two-dimensional dielectric media, this work offers a frequency-domain boundary element method based on isogeometric analysis. The Isogeometric boundary element method (IGABEM) is used to guarantee geometric correctness during optimization and prevent over-refinement of the mesh. Non-uniform rational B-splines are used to discretize the boundary integrals of the model, enabling rapid numerical computation while ensuring high accuracy. Furthermore, as an alternative model for electromagnetic scattering shape optimization issues, a gray wolf optimizer-based back-propagation neural network (GWO-ANN) is created, with radar cross-section (RCS) as the objective function. Finally, the GWO-ANN is used as a surrogate model for shape optimization in multi-frequency electromagnetic scattering problems with the RCS as the objective function. In computational examples, this algorithm efficiently and accurately solves electromagnetic scattering problems under multiple frequencies.
期刊介绍:
Science Progress has for over 100 years been a highly regarded review publication in science, technology and medicine. Its objective is to excite the readers'' interest in areas with which they may not be fully familiar but which could facilitate their interest, or even activity, in a cognate field.