DeepDR: a deep learning library for drug response prediction.

Zhengxiang Jiang, Pengyong Li
{"title":"DeepDR: a deep learning library for drug response prediction.","authors":"Zhengxiang Jiang, Pengyong Li","doi":"10.1093/bioinformatics/btae688","DOIUrl":null,"url":null,"abstract":"<p><strong>Summary: </strong>Accurate drug response prediction is critical to advancing precision medicine and drug discovery. Recent advances in deep learning (DL) have shown promise in predicting drug response; however, the lack of convenient tools to support such modeling limits their widespread application. To address this, we introduce DeepDR, the first DL library specifically developed for drug response prediction. DeepDR simplifies the process by automating drug and cell featurization, model construction, training, and inference, all achievable with brief programming. The library incorporates three types of drug features along with nine drug encoders, four types of cell features along with nine cell encoders, and two fusion modules, enabling the implementation of up to 135 DL models for drug response prediction. We also explored benchmarking performance with DeepDR, and the optimal models are available on a user-friendly visual interface.</p><p><strong>Availability and implementation: </strong>DeepDR can be installed from PyPI (https://pypi.org/project/deepdr). The source code and experimental data are available on GitHub (https://github.com/user15632/DeepDR).</p><p><strong>Supplementary information: </strong>Supplementary data are available at Bioinformatics online.</p>","PeriodicalId":93899,"journal":{"name":"Bioinformatics (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioinformatics/btae688","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Summary: Accurate drug response prediction is critical to advancing precision medicine and drug discovery. Recent advances in deep learning (DL) have shown promise in predicting drug response; however, the lack of convenient tools to support such modeling limits their widespread application. To address this, we introduce DeepDR, the first DL library specifically developed for drug response prediction. DeepDR simplifies the process by automating drug and cell featurization, model construction, training, and inference, all achievable with brief programming. The library incorporates three types of drug features along with nine drug encoders, four types of cell features along with nine cell encoders, and two fusion modules, enabling the implementation of up to 135 DL models for drug response prediction. We also explored benchmarking performance with DeepDR, and the optimal models are available on a user-friendly visual interface.

Availability and implementation: DeepDR can be installed from PyPI (https://pypi.org/project/deepdr). The source code and experimental data are available on GitHub (https://github.com/user15632/DeepDR).

Supplementary information: Supplementary data are available at Bioinformatics online.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DeepDR:用于药物反应预测的深度学习库。
摘要:准确的药物反应预测对于推进精准医疗和药物发现至关重要。深度学习(DL)的最新进展显示了预测药物反应的前景;然而,由于缺乏支持此类建模的便捷工具,限制了其广泛应用。为了解决这个问题,我们推出了 DeepDR,这是第一个专门为药物反应预测开发的深度学习库。DeepDR 通过自动进行药物和细胞特征描述、模型构建、训练和推理来简化流程,所有这些都可以通过简短的编程实现。该库包含三种类型的药物特征和九种药物编码器、四种类型的细胞特征和九种细胞编码器以及两个融合模块,可实现多达 135 个用于药物反应预测的 DL 模型。我们还利用 DeepDR 探索了基准性能,并在用户友好的可视化界面上提供了最佳模型:DeepDR 可从 PyPI (https://pypi.org/project/deepdr) 安装。源代码和实验数据可从 GitHub(https://github.com/user15632/DeepDR)获取:补充数据可在 Bioinformatics online 上获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Phasing Nanopore genome assembly by integrating heterozygous variations and Hi-C data. STRprofiler: efficient comparisons of short tandem repeat profiles for biomedical model authentication. Virtual Tissue Expression Analysis. Fast Polypharmacy Side Effect Prediction Using Tensor Factorisation. Lefser: Implementation of metagenomic biomarker discovery tool, LEfSe, in R.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1