Sensitivities in protein allocation models reveal distribution of metabolic capacity and flux control.

Samira van den Bogaard, Pedro A Saa, Tobias B Alter
{"title":"Sensitivities in protein allocation models reveal distribution of metabolic capacity and flux control.","authors":"Samira van den Bogaard, Pedro A Saa, Tobias B Alter","doi":"10.1093/bioinformatics/btae691","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>Expanding on constraint-based metabolic models, protein allocation models (PAMs) enhance flux predictions by accounting for protein resource allocation in cellular metabolism. Yet, to this date, there are no dedicated methods for analyzing and understanding the growth-limiting factors in simulated phenotypes in PAMs.</p><p><strong>Results: </strong>Here, we introduce a systematic framework for identifying the most sensitive enzyme concentrations (sEnz) in PAMs. The framework exploits the primal and dual formulations of these models to derive sensitivity coefficients based on relations between variables, constraints, and the objective function. This approach enhances our understanding of the growth-limiting factors of metabolic phenotypes under specific environmental or genetic conditions. Compared to other traditional methods for calculating sensitivities, sEnz requires substantially less computation time and facilitates more intuitive comparison and analysis of sensitivities. The sensitivities calculated by sEnz cover enzymes, reactions and protein sectors, enabling a holistic overview of the factors influencing metabolism. When applied to an Escherichia coli PAM, sEnz revealed major pathways and enzymes driving overflow metabolism. Overall, sEnz offers a computational efficient framework for understanding PAM predictions and unravelling the factors governing a particular metabolic phenotype.</p><p><strong>Availability and implementation: </strong>sEnz is implemented in the modular toolbox for the generation and analysis of PAMs in Python (PAModelpy; v.0.0.3.3), available on Pypi (https://pypi.org/project/PAModelpy/). The source code together with all other python scripts and notebooks are available on GitHub (https://github.com/iAMB-RWTH-Aachen/PAModelpy).</p><p><strong>Supplementary information: </strong>Supplementary data are available at Bioinformatics online.</p>","PeriodicalId":93899,"journal":{"name":"Bioinformatics (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioinformatics/btae691","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Motivation: Expanding on constraint-based metabolic models, protein allocation models (PAMs) enhance flux predictions by accounting for protein resource allocation in cellular metabolism. Yet, to this date, there are no dedicated methods for analyzing and understanding the growth-limiting factors in simulated phenotypes in PAMs.

Results: Here, we introduce a systematic framework for identifying the most sensitive enzyme concentrations (sEnz) in PAMs. The framework exploits the primal and dual formulations of these models to derive sensitivity coefficients based on relations between variables, constraints, and the objective function. This approach enhances our understanding of the growth-limiting factors of metabolic phenotypes under specific environmental or genetic conditions. Compared to other traditional methods for calculating sensitivities, sEnz requires substantially less computation time and facilitates more intuitive comparison and analysis of sensitivities. The sensitivities calculated by sEnz cover enzymes, reactions and protein sectors, enabling a holistic overview of the factors influencing metabolism. When applied to an Escherichia coli PAM, sEnz revealed major pathways and enzymes driving overflow metabolism. Overall, sEnz offers a computational efficient framework for understanding PAM predictions and unravelling the factors governing a particular metabolic phenotype.

Availability and implementation: sEnz is implemented in the modular toolbox for the generation and analysis of PAMs in Python (PAModelpy; v.0.0.3.3), available on Pypi (https://pypi.org/project/PAModelpy/). The source code together with all other python scripts and notebooks are available on GitHub (https://github.com/iAMB-RWTH-Aachen/PAModelpy).

Supplementary information: Supplementary data are available at Bioinformatics online.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
蛋白质分配模型的敏感性揭示了代谢能力和通量控制的分布。
动因:蛋白质分配模型(PAMs)是基于约束的代谢模型的扩展,它通过考虑细胞代谢中的蛋白质资源分配来增强通量预测。然而,到目前为止,还没有专门的方法来分析和理解 PAMs 模拟表型中的生长限制因素:在此,我们介绍了一个系统框架,用于确定 PAMs 中最敏感的酶浓度(sEnz)。该框架利用了这些模型的基本公式和对偶公式,根据变量、约束条件和目标函数之间的关系推导出敏感系数。这种方法增强了我们对特定环境或遗传条件下代谢表型生长限制因素的理解。与其他计算敏感度的传统方法相比,sEnz 所需的计算时间大大减少,而且便于对敏感度进行更直观的比较和分析。sEnz 计算出的敏感度涵盖酶、反应和蛋白质部门,可对影响新陈代谢的因素进行全面概述。在应用于大肠杆菌 PAM 时,sEnz 揭示了驱动溢出代谢的主要途径和酶。总体而言,sEnz 提供了一个高效的计算框架,可用于理解 PAM 预测,并揭示影响特定代谢表型的因素。源代码以及所有其他 Python 脚本和笔记本可在 GitHub 上获取 (https://github.com/iAMB-RWTH-Aachen/PAModelpy)。补充信息:补充数据可在 Bioinformatics online 上获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Phasing Nanopore genome assembly by integrating heterozygous variations and Hi-C data. STRprofiler: efficient comparisons of short tandem repeat profiles for biomedical model authentication. Virtual Tissue Expression Analysis. Fast Polypharmacy Side Effect Prediction Using Tensor Factorisation. Lefser: Implementation of metagenomic biomarker discovery tool, LEfSe, in R.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1