STRPsearch: fast detection of structured tandem repeat proteins.

Soroush Mozaffari, Paula Nazarena Arrías, Damiano Clementel, Damiano Piovesan, Carlo Ferrari, Silvio C E Tosatto, Alexander Miguel Monzon
{"title":"STRPsearch: fast detection of structured tandem repeat proteins.","authors":"Soroush Mozaffari, Paula Nazarena Arrías, Damiano Clementel, Damiano Piovesan, Carlo Ferrari, Silvio C E Tosatto, Alexander Miguel Monzon","doi":"10.1093/bioinformatics/btae690","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>Structured Tandem Repeats Proteins (STRPs) constitute a subclass of tandem repeats characterized by repetitive structural motifs. These proteins exhibit distinct secondary structures that form repetitive tertiary arrangements, often resulting in large molecular assemblies. Despite highly variable sequences, STRPs can perform important and diverse biological functions, maintaining a consistent structure with a variable number of repeat units. With the advent of protein structure prediction methods, millions of 3D-models of proteins are now publicly available. However, automatic detection of STRPs remains challenging with current state-of-the-art tools due to their lack of accuracy and long execution times, hindering their application on large datasets. In most cases, manual curation remains the most accurate method for detecting and classifying STRPs, making it impracticable to annotate millions of structures.</p><p><strong>Results: </strong>We introduce STRPsearch, a novel tool for the rapid identification, classification, and mapping of STRPs. Leveraging manually curated entries from RepeatsDB as the known conformational space of STRPs, STRPsearch employs the latest advances in structural alignment for a fast and accurate detection of repeated structural motifs in proteins, followed by an innovative approach to map units and insertions through the generation of TM-score profiles. STRPsearch is highly scalable, efficiently processing large datasets, and can be applied to both experimental structures and predicted models. Additionally, it demonstrates superior performance compared to existing tools, offering researchers a reliable and comprehensive solution for STRP analysis across diverse proteomes.</p><p><strong>Availability and implementation: </strong>STRPsearch is coded in Python. All scripts and associated documentation are available from: https://github.com/BioComputingUP/STRPsearch.</p><p><strong>Supplementary information: </strong>Supplementary data are available at Bioinformatics online.</p>","PeriodicalId":93899,"journal":{"name":"Bioinformatics (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioinformatics/btae690","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Motivation: Structured Tandem Repeats Proteins (STRPs) constitute a subclass of tandem repeats characterized by repetitive structural motifs. These proteins exhibit distinct secondary structures that form repetitive tertiary arrangements, often resulting in large molecular assemblies. Despite highly variable sequences, STRPs can perform important and diverse biological functions, maintaining a consistent structure with a variable number of repeat units. With the advent of protein structure prediction methods, millions of 3D-models of proteins are now publicly available. However, automatic detection of STRPs remains challenging with current state-of-the-art tools due to their lack of accuracy and long execution times, hindering their application on large datasets. In most cases, manual curation remains the most accurate method for detecting and classifying STRPs, making it impracticable to annotate millions of structures.

Results: We introduce STRPsearch, a novel tool for the rapid identification, classification, and mapping of STRPs. Leveraging manually curated entries from RepeatsDB as the known conformational space of STRPs, STRPsearch employs the latest advances in structural alignment for a fast and accurate detection of repeated structural motifs in proteins, followed by an innovative approach to map units and insertions through the generation of TM-score profiles. STRPsearch is highly scalable, efficiently processing large datasets, and can be applied to both experimental structures and predicted models. Additionally, it demonstrates superior performance compared to existing tools, offering researchers a reliable and comprehensive solution for STRP analysis across diverse proteomes.

Availability and implementation: STRPsearch is coded in Python. All scripts and associated documentation are available from: https://github.com/BioComputingUP/STRPsearch.

Supplementary information: Supplementary data are available at Bioinformatics online.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
STRPsearch:快速检测结构串联重复蛋白。
研究动机结构串联重复蛋白(Structured Tandem Repeats Proteins,STRPs)是串联重复蛋白的一个亚类,其特点是具有重复的结构基调。这些蛋白质表现出独特的二级结构,形成重复的三级排列,通常形成大的分子组合。尽管序列变化很大,但 STRPs 仍能发挥重要而多样的生物功能,通过不同数量的重复单元保持结构的一致性。随着蛋白质结构预测方法的出现,现在已有数百万个蛋白质三维模型可供公开使用。然而,由于缺乏准确性和执行时间长,目前最先进的工具仍然难以自动检测 STRPs,这阻碍了它们在大型数据集上的应用。在大多数情况下,手工整理仍然是检测和分类 STRPs 的最准确方法,这使得对数百万个结构进行注释变得不切实际:我们介绍了 STRPsearch,这是一种用于快速识别、分类和绘制 STRPs 的新型工具。STRPsearch 利用 RepeatsDB 中的人工编辑条目作为 STRPs 的已知构象空间,采用结构比对方面的最新进展,快速准确地检测蛋白质中的重复结构母题,然后通过生成 TM 分数剖面图,以创新方法绘制单元和插入图。STRPsearch 具有很强的可扩展性,能高效处理大型数据集,并可应用于实验结构和预测模型。此外,与现有工具相比,STRPsearch 性能更优越,可为研究人员提供可靠、全面的 STRP 分析解决方案,适用于各种蛋白质组:STRPsearch 是用 Python 编写的。所有脚本和相关文档可从以下网站获取: https://github.com/BioComputingUP/STRPsearch.Supplementary information:补充数据可在 Bioinformatics online 上获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
RUCova: Removal of Unwanted Covariance in mass cytometry data. ViraLM: Empowering Virus Discovery through the Genome Foundation Model. CVR-BBI: An Open-Source VR Platform for Multi-User Collaborative Brain to Brain Interfaces. Expert-guided protein Language Models enable accurate and blazingly fast fitness prediction. FungiFun3: Systemic gene set enrichment analysis for fungal species.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1