Lars Gabriel, Felix Becker, Katharina J Hoff, Mario Stanke
{"title":"Tiberius: End-to-end deep learning with an HMM for gene prediction.","authors":"Lars Gabriel, Felix Becker, Katharina J Hoff, Mario Stanke","doi":"10.1093/bioinformatics/btae685","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>For more than 25 years, learning-based eukaryotic gene predictors were driven by hidden Markov models (HMMs), which were directly inputted a DNA sequence. Recently, Holst et al. demonstrated with their program Helixer that the accuracy of ab initio eukaryotic gene prediction can be improved by combining deep learning layers with a separate HMM postprocessor.</p><p><strong>Results: </strong>We present Tiberius, a novel deep learning-based ab initio gene predictor that end-to-end integrates convolutional and long short-term memory layers with a differentiable HMM layer. Tiberius uses a custom gene prediction loss and was trained for prediction in mammalian genomes and evaluated on human and two other genomes. It significantly outperforms existing ab initio methods, achieving F1-scores of 62% at gene level for the human genome, compared to 21% for the next best ab initio method. In de novo mode, Tiberius predicts the exon-intron structure of two out of three human genes without error. Remarkably, even Tiberius's ab initio accuracy matches that of BRAKER3, which uses RNA-seq data and a protein database. Tiberius's highly parallelized model is the fastest state-of-the-art gene prediction method, processing the human genome in under 2 hours.</p><p><strong>Availability and implementation: </strong>https://github.com/Gaius-Augustus/Tiberius.</p>","PeriodicalId":93899,"journal":{"name":"Bioinformatics (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioinformatics/btae685","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Motivation: For more than 25 years, learning-based eukaryotic gene predictors were driven by hidden Markov models (HMMs), which were directly inputted a DNA sequence. Recently, Holst et al. demonstrated with their program Helixer that the accuracy of ab initio eukaryotic gene prediction can be improved by combining deep learning layers with a separate HMM postprocessor.
Results: We present Tiberius, a novel deep learning-based ab initio gene predictor that end-to-end integrates convolutional and long short-term memory layers with a differentiable HMM layer. Tiberius uses a custom gene prediction loss and was trained for prediction in mammalian genomes and evaluated on human and two other genomes. It significantly outperforms existing ab initio methods, achieving F1-scores of 62% at gene level for the human genome, compared to 21% for the next best ab initio method. In de novo mode, Tiberius predicts the exon-intron structure of two out of three human genes without error. Remarkably, even Tiberius's ab initio accuracy matches that of BRAKER3, which uses RNA-seq data and a protein database. Tiberius's highly parallelized model is the fastest state-of-the-art gene prediction method, processing the human genome in under 2 hours.
Availability and implementation: https://github.com/Gaius-Augustus/Tiberius.