Alfredo Escanciano Gómez, Charlotte Ipenburg, Ulrika Candolin
{"title":"Greater risk-taking by non-native than native shrimp: an advantage in a human-disturbed environment?","authors":"Alfredo Escanciano Gómez, Charlotte Ipenburg, Ulrika Candolin","doi":"10.1186/s12862-024-02330-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The invasion of non-native species into ecosystems is a growing human-induced problem. To control their spread and population growth, knowledge is needed on the factors that facilitate or impede their invasions. In animals, traits often associated with invasion success are high activity, boldness, and aggression. However, these traits also make individuals susceptible to predation, which could curb population growth. We investigated if a recent invader into the Baltic Sea, the shrimp Palaemon elegans, differs in risk-taking from a native shrimp, P. adspersus. We recorded activity, habitat choice, and response to perceived predation threat of both species.</p><p><strong>Results: </strong>We found the invading shrimp to take greater risks than the native one; while the native shrimp adjusted its behaviour to habitat structure and exposure to a perceived predator, the non-native shrimp did not, and it resumed normal activity sooner after a perceived predation threat. Despite the greater risk taking by the non-native shrimp, its population has grown rapidly during the last two decades in the investigated area and is now larger than that of the native shrimp.</p><p><strong>Conclusions: </strong>We discuss plausible explanations for the population growth of the invader, including the recent decline in predatory fishes that could have reduced the cost of risk-taking, and anthropogenic eutrophication that has increased food abundance could have allowed the population growth. These results stress the need to assess the optimality of the behaviours of both native and non-native species when investigating the factors that influence invasion success in human-disturbed environments.</p>","PeriodicalId":93910,"journal":{"name":"BMC ecology and evolution","volume":"24 1","pages":"143"},"PeriodicalIF":2.3000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11574993/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC ecology and evolution","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s12862-024-02330-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: The invasion of non-native species into ecosystems is a growing human-induced problem. To control their spread and population growth, knowledge is needed on the factors that facilitate or impede their invasions. In animals, traits often associated with invasion success are high activity, boldness, and aggression. However, these traits also make individuals susceptible to predation, which could curb population growth. We investigated if a recent invader into the Baltic Sea, the shrimp Palaemon elegans, differs in risk-taking from a native shrimp, P. adspersus. We recorded activity, habitat choice, and response to perceived predation threat of both species.
Results: We found the invading shrimp to take greater risks than the native one; while the native shrimp adjusted its behaviour to habitat structure and exposure to a perceived predator, the non-native shrimp did not, and it resumed normal activity sooner after a perceived predation threat. Despite the greater risk taking by the non-native shrimp, its population has grown rapidly during the last two decades in the investigated area and is now larger than that of the native shrimp.
Conclusions: We discuss plausible explanations for the population growth of the invader, including the recent decline in predatory fishes that could have reduced the cost of risk-taking, and anthropogenic eutrophication that has increased food abundance could have allowed the population growth. These results stress the need to assess the optimality of the behaviours of both native and non-native species when investigating the factors that influence invasion success in human-disturbed environments.