Why Are Optical Coronal Lines Faint in Active Galactic Nuclei?

Jeffrey D. McKaig, Shobita Satyapal, Ari Laor, Nicholas P. Abel, Sara M. Doan, Claudio Ricci and Jenna M. Cann
{"title":"Why Are Optical Coronal Lines Faint in Active Galactic Nuclei?","authors":"Jeffrey D. McKaig, Shobita Satyapal, Ari Laor, Nicholas P. Abel, Sara M. Doan, Claudio Ricci and Jenna M. Cann","doi":"10.3847/1538-4357/ad7a79","DOIUrl":null,"url":null,"abstract":"Forbidden collisionally excited optical atomic transitions from high-ionization-potential (IP ≥ 54.8 eV) ions, such as Ca4+, Ne4+, Fe6+, Fe10+, Fe13+, Ar9+, and S11+, are known as optical coronal lines (CLs). The spectral energy distributions (SEDs) of active galactic nuclei (AGNs) typically extend to hundreds of electron volts and above, which should be able to produce such highly ionized gas. However, optical CLs are often not detected in AGNs. Here we use photoionization calculations with the cloudy spectral synthesis code to determine possible reasons for the rarity of these optical CLs. We calculate CL luminosities and equivalent widths from radiation-pressure-confined photoionized gas slabs exposed to an AGN continuum. We consider the role of dust, metallicity, and ionizing SED in the formation of optical CLs. We find that (i) dust reduces the strength of most CLs by ∼3 orders of magnitude, primarily as a result of depletion of metals onto the dust grains; (ii) in contrast to the CLs, the more widely observed lower-IP optical lines such as [O iii] 5007 Å are less affected by depletion, and some are actually enhanced in dusty gas; and (iii) many optical CLs become detectable in dustless gas, and are particularly strong for a hard ionizing SED. This implies that prominent CL emission likely originates in dustless gas. Our calculations also suggest optical CL emission is enhanced in galaxies with low-mass black holes characterized by a harder radiation field and a low dust-to-metals ratio. The fact that optical CLs are not widely observed in the early Universe with JWST may point to rapid dust formation at high redshift.","PeriodicalId":501813,"journal":{"name":"The Astrophysical Journal","volume":"249 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Astrophysical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/1538-4357/ad7a79","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Forbidden collisionally excited optical atomic transitions from high-ionization-potential (IP ≥ 54.8 eV) ions, such as Ca4+, Ne4+, Fe6+, Fe10+, Fe13+, Ar9+, and S11+, are known as optical coronal lines (CLs). The spectral energy distributions (SEDs) of active galactic nuclei (AGNs) typically extend to hundreds of electron volts and above, which should be able to produce such highly ionized gas. However, optical CLs are often not detected in AGNs. Here we use photoionization calculations with the cloudy spectral synthesis code to determine possible reasons for the rarity of these optical CLs. We calculate CL luminosities and equivalent widths from radiation-pressure-confined photoionized gas slabs exposed to an AGN continuum. We consider the role of dust, metallicity, and ionizing SED in the formation of optical CLs. We find that (i) dust reduces the strength of most CLs by ∼3 orders of magnitude, primarily as a result of depletion of metals onto the dust grains; (ii) in contrast to the CLs, the more widely observed lower-IP optical lines such as [O iii] 5007 Å are less affected by depletion, and some are actually enhanced in dusty gas; and (iii) many optical CLs become detectable in dustless gas, and are particularly strong for a hard ionizing SED. This implies that prominent CL emission likely originates in dustless gas. Our calculations also suggest optical CL emission is enhanced in galaxies with low-mass black holes characterized by a harder radiation field and a low dust-to-metals ratio. The fact that optical CLs are not widely observed in the early Universe with JWST may point to rapid dust formation at high redshift.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
为什么活动星系核中的光学日冕线很淡?
来自高电离势(IP ≥ 54.8 eV)离子(如 Ca4+、Ne4+、Fe6+、Fe10+、Fe13+、Ar9+ 和 S11+)的禁止碰撞激发光学原子跃迁被称为光学日冕线(CLs)。活动星系核(AGN)的光谱能量分布(SED)通常达到数百电子伏特或更高,因此应该能够产生这种高度电离的气体。然而,在AGN中往往探测不到光学CL。在这里,我们利用浊谱合成代码进行光电离计算,以确定这些光学CL罕见的可能原因。我们计算了暴露于AGN连续面的辐射压力约束光离子化气体板块的CL光度和等效宽度。我们考虑了尘埃、金属性和电离SED在光学CL形成过程中的作用。我们发现:(i)尘埃会将大多数 CL 的强度降低 3 个数量级,这主要是由于尘粒上的金属损耗造成的;(ii)与 CL 相反,更广泛观测到的低 IP 光学线(如 [O iii] 5007 Å)受损耗的影响较小,而且有些光学线在尘埃气体中实际上是增强的;(iii)许多光学 CL 在无尘气体中变得可探测到,而且对于硬电离 SED 来说特别强。这意味着突出的 CL 发射很可能源自无尘气体。我们的计算还表明,在具有低质量黑洞的星系中,光学CL发射会增强,这些黑洞的特点是辐射场更强、尘-金属比更低。JWST在早期宇宙中并没有广泛观测到光学CL,这一事实可能表明在高红移下尘埃的快速形成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Expanding the Inventory of Molecule-rich Planetary Nebulae: New Observations of M4-17, Hu 1-1, M1-59, and Na 2 Whole-disk Sampling of Molecular Clouds in M83 Disk2Planet: A Robust and Automated Machine Learning Tool for Parameter Inference in Disk–Planet Systems A Search for Persistent Radio Sources toward Repeating Fast Radio Bursts Discovered by CHIME/FRB Constraining Quasar Feedback from Analysis of the Hydrostatic Equilibrium of the Molecular Gas in Their Host Galaxies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1