Yikui Li, Jie Li, Wei-Kang Chen, Yang Li, Sheng Xu, Linwei Li, Bing Xia, Ren Wang
{"title":"Tuning architectural organization of eukaryotic P450 system to boost bioproduction in Escherichia coli","authors":"Yikui Li, Jie Li, Wei-Kang Chen, Yang Li, Sheng Xu, Linwei Li, Bing Xia, Ren Wang","doi":"10.1038/s41467-024-54259-1","DOIUrl":null,"url":null,"abstract":"<p>Eukaryotic cytochrome P450 enzymes, generally colocalizing with their redox partner cytochrome P450 reductase (CPR) on the cytoplasmic surface of organelle membranes, often perform poorly in prokaryotic cells, whether expressed with CPR as a tandem chimera or free-floating individuals, causing a low titer of heterologous chemicals. To improve their biosynthetic performance in <i>Escherichia coli</i>, here, we architecturally design self-assembled alternatives of eukaryotic P450 system using reconstructed P450 and CPR, and create a set of N-termini-bridged P450-CPR heterodimers as the counterparts of eukaryotic P450 system with N-terminus-guided colocalization. The covalent counterparts show superior and robust biosynthetic performance, and the N-termini-bridged architecture is validated to improve the biosynthetic performance of both plant and human P450 systems. Furthermore, the architectural configuration of protein assemblies has an inherent effect on the biosynthetic performance of N-termini-bridged P450-CPR heterodimers. The results suggest that spatial architecture-guided protein assembly could serve as an efficient strategy for improving the biosynthetic performance of protein complexes, particularly those related to eukaryotic membranes, in prokaryotic and even eukaryotic hosts.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"11 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-54259-1","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Eukaryotic cytochrome P450 enzymes, generally colocalizing with their redox partner cytochrome P450 reductase (CPR) on the cytoplasmic surface of organelle membranes, often perform poorly in prokaryotic cells, whether expressed with CPR as a tandem chimera or free-floating individuals, causing a low titer of heterologous chemicals. To improve their biosynthetic performance in Escherichia coli, here, we architecturally design self-assembled alternatives of eukaryotic P450 system using reconstructed P450 and CPR, and create a set of N-termini-bridged P450-CPR heterodimers as the counterparts of eukaryotic P450 system with N-terminus-guided colocalization. The covalent counterparts show superior and robust biosynthetic performance, and the N-termini-bridged architecture is validated to improve the biosynthetic performance of both plant and human P450 systems. Furthermore, the architectural configuration of protein assemblies has an inherent effect on the biosynthetic performance of N-termini-bridged P450-CPR heterodimers. The results suggest that spatial architecture-guided protein assembly could serve as an efficient strategy for improving the biosynthetic performance of protein complexes, particularly those related to eukaryotic membranes, in prokaryotic and even eukaryotic hosts.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.