A Huluwa phosphorylation switch regulates embryonic axis induction

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Nature Communications Pub Date : 2024-11-19 DOI:10.1038/s41467-024-54450-4
Yao Li, Yun Yan, Bo Gong, Qianwen Zheng, Haiyan Zhou, Jiarui Sun, Mingpeng Li, Zhao Wang, Yaohui Li, Yunjing Wan, Weixi Chen, Shiqian Qi, Xianming Mo, Anming Meng, Bo Xiang, Jing Chen
{"title":"A Huluwa phosphorylation switch regulates embryonic axis induction","authors":"Yao Li, Yun Yan, Bo Gong, Qianwen Zheng, Haiyan Zhou, Jiarui Sun, Mingpeng Li, Zhao Wang, Yaohui Li, Yunjing Wan, Weixi Chen, Shiqian Qi, Xianming Mo, Anming Meng, Bo Xiang, Jing Chen","doi":"10.1038/s41467-024-54450-4","DOIUrl":null,"url":null,"abstract":"<p>Embryonic axis formation is essential for patterning and morphogenesis in vertebrates and is tightly regulated by the dorsal organizer. Previously, we demonstrated that maternally derived Huluwa (Hwa) acts as a dorsal determinant, dictating axis formation by activating β-catenin signaling in zebrafish and <i>Xenopus</i>. However, the mechanism of activation and fine regulation of the Hwa protein remains unclear. Through candidate screening we identified a mutation at Ser168 in the PPNSP motif of Hwa that dramatically abolishes its axis-inducing activity. Mechanistically, mutating the Ser168 residue reduced its binding affinity to Tankyrase 1/2 and the degradation of the Axin protein, weakening β-catenin signaling activation. We confirmed that Ser168 is phosphorylated and that phosphorylation increases Hwa activity in β-catenin signaling and axis induction. Several kinases including Cdk16, Cdk2, and GSK3β, were found to enhance Ser168 phosphorylation in vitro and in vivo. Both dominant-negative Cdk16 expression and pHwa (Ser168) antibody treatment reduce Hwa function. Lastly, a knock-in allele mutating Ser168 to alanine resulted in embryos lacking body axes, demonstrating that Ser168 is essential to axis formation. In summary, Ser168 acts as a phosphorylation switch in Hwa/β-catenin signaling for embryonic axis induction, regulated by multiple kinases.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"249 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-54450-4","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Embryonic axis formation is essential for patterning and morphogenesis in vertebrates and is tightly regulated by the dorsal organizer. Previously, we demonstrated that maternally derived Huluwa (Hwa) acts as a dorsal determinant, dictating axis formation by activating β-catenin signaling in zebrafish and Xenopus. However, the mechanism of activation and fine regulation of the Hwa protein remains unclear. Through candidate screening we identified a mutation at Ser168 in the PPNSP motif of Hwa that dramatically abolishes its axis-inducing activity. Mechanistically, mutating the Ser168 residue reduced its binding affinity to Tankyrase 1/2 and the degradation of the Axin protein, weakening β-catenin signaling activation. We confirmed that Ser168 is phosphorylated and that phosphorylation increases Hwa activity in β-catenin signaling and axis induction. Several kinases including Cdk16, Cdk2, and GSK3β, were found to enhance Ser168 phosphorylation in vitro and in vivo. Both dominant-negative Cdk16 expression and pHwa (Ser168) antibody treatment reduce Hwa function. Lastly, a knock-in allele mutating Ser168 to alanine resulted in embryos lacking body axes, demonstrating that Ser168 is essential to axis formation. In summary, Ser168 acts as a phosphorylation switch in Hwa/β-catenin signaling for embryonic axis induction, regulated by multiple kinases.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Huluwa 磷酸化开关调控胚胎轴诱导
胚轴的形成对于脊椎动物的模式化和形态发生至关重要,并受到背侧组织器的严格调控。此前,我们证明了母源的 Huluwa(Hwa)在斑马鱼和爪蟾中作为背侧决定因子,通过激活β-catenin 信号来决定轴的形成。然而,Hwa 蛋白的激活和精细调控机制仍不清楚。通过候选筛选,我们发现了Hwa蛋白PPNSP基序中的Ser168突变,该突变极大地削弱了Hwa蛋白的轴诱导活性。从机理上讲,突变Ser168残基会降低其与Tankyrase 1/2的结合亲和力以及Axin蛋白的降解,从而削弱β-catenin信号的激活。我们证实,Ser168发生了磷酸化,磷酸化增加了Hwa在β-catenin信号转导和轴诱导中的活性。我们发现包括 Cdk16、Cdk2 和 GSK3β 在内的几种激酶在体外和体内都能增强 Ser168 的磷酸化。显性阴性 Cdk16 表达和 pHwa(Ser168)抗体处理都会降低 Hwa 的功能。最后,将 Ser168 突变为丙氨酸的基因敲入等位基因导致胚胎缺乏体轴,这表明 Ser168 对轴的形成至关重要。总之,Ser168是Hwa/β-catenin信号转导中的磷酸化开关,受多种激酶调控,用于胚胎轴的诱导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
期刊最新文献
Electron delocalization in a 2D Mott insulator Engineered transcription-associated Cas9 targeting in eukaryotic cells Near-field acoustic imaging with a caged bubble Single-cell transcriptome analysis reveals CD34 as a marker of human sinoatrial node pacemaker cardiomyocytes The interplay of DNA repair context with target sequence predictably biases Cas9-generated mutations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1