Statistical Analysis of Reflected GNSS Signal Off Sea Surfaces From a Coastal Scenario

IF 7.5 1区 地球科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Transactions on Geoscience and Remote Sensing Pub Date : 2024-11-18 DOI:10.1109/TGRS.2024.3500014
Feng Wang;Dongkai Yang;Jie Li;Jin Xing;Guodong Zhang
{"title":"Statistical Analysis of Reflected GNSS Signal Off Sea Surfaces From a Coastal Scenario","authors":"Feng Wang;Dongkai Yang;Jie Li;Jin Xing;Guodong Zhang","doi":"10.1109/TGRS.2024.3500014","DOIUrl":null,"url":null,"abstract":"This article presents the statistical analysis of the reflected global navigation satellite system-reflectometry (GNSS-R) signal from a coastal experiment, including the non-Gaussianity, probability distribution functions, autocorrelations, and fractal dimensions of the speckle and texture components. The results clearly show that the amplitude distribution is modeled well by a Weibull model. The texture component of the reflected GNSS signal has a log-normal distribution. Due to the presence of the coherent and non-coherent components, the phase of the reflected signal is not uniformly distributed with \n<inline-formula> <tex-math>$\\left [{{-\\pi, \\pi }}\\right]$ </tex-math></inline-formula>\n. The autocorrelation functions (ACFs) of the speckle and texture components both are Gaussian-shaped, with the correlation times on the order of hundreds of milliseconds and a few seconds, respectively. Some statistical properties of the reflected GNSS signal depend on GNSS-R geometry and sea state; therefore, once the influence of GNSS-R geometry is corrected, they can be used to determine sea state. The speckle and texture correlation times of the reflected GNSS signal, as an example, are used to retrieve wind speed. The speckle and texture correlation times provide retrieved wind speeds with root mean square errors (RMSEs) of 1.66 and 1.75 m/s. When a minimum variance estimator is used to fuse two retrieved wind speeds, the RMSE is reduced to 1.46 m/s. The work is helpful for developing a GNSS signal scattering model over the sea surface and further studies on coastal GNSS-R to monitor sea state and maritime target.","PeriodicalId":13213,"journal":{"name":"IEEE Transactions on Geoscience and Remote Sensing","volume":"62 ","pages":"1-15"},"PeriodicalIF":7.5000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Geoscience and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10755163/","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This article presents the statistical analysis of the reflected global navigation satellite system-reflectometry (GNSS-R) signal from a coastal experiment, including the non-Gaussianity, probability distribution functions, autocorrelations, and fractal dimensions of the speckle and texture components. The results clearly show that the amplitude distribution is modeled well by a Weibull model. The texture component of the reflected GNSS signal has a log-normal distribution. Due to the presence of the coherent and non-coherent components, the phase of the reflected signal is not uniformly distributed with $\left [{{-\pi, \pi }}\right]$ . The autocorrelation functions (ACFs) of the speckle and texture components both are Gaussian-shaped, with the correlation times on the order of hundreds of milliseconds and a few seconds, respectively. Some statistical properties of the reflected GNSS signal depend on GNSS-R geometry and sea state; therefore, once the influence of GNSS-R geometry is corrected, they can be used to determine sea state. The speckle and texture correlation times of the reflected GNSS signal, as an example, are used to retrieve wind speed. The speckle and texture correlation times provide retrieved wind speeds with root mean square errors (RMSEs) of 1.66 and 1.75 m/s. When a minimum variance estimator is used to fuse two retrieved wind speeds, the RMSE is reduced to 1.46 m/s. The work is helpful for developing a GNSS signal scattering model over the sea surface and further studies on coastal GNSS-R to monitor sea state and maritime target.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
沿海场景海面反射 GNSS 信号的统计分析
本文介绍了对海岸实验中反射的全球导航卫星系统-反射测量(GNSS-R)信号的统计分析,包括斑点和纹理成分的非高斯性、概率分布函数、自相关性和分形维度。结果清楚地表明,振幅分布可以用 Weibull 模型很好地建模。反射的 GNSS 信号的纹理成分具有对数正态分布。由于相干分量和非相干分量的存在,反射信号的相位分布并不均匀,为 $/left [{{-\pi, \pi }}\right]$ 。斑点分量和纹理分量的自相关函数(ACF)都是高斯型的,相关时间分别为几百毫秒和几秒。反射的 GNSS 信号的某些统计特性取决于 GNSS-R 的几何形状和海况;因此,一旦校正了 GNSS-R 几何形状的影响,就可以利用它们来确定海况。例如,反射的 GNSS 信号的斑点和纹理相关时间可用于检索风速。斑点和纹理相关时间提供的检索风速均方根误差(RMSE)分别为 1.66 和 1.75 米/秒。当使用最小方差估计器融合两个检索到的风速时,均方根误差降低到 1.46 m/s。这项工作有助于建立海面全球导航卫星系统信号散射模型,以及进一步研究海岸全球导航卫星系统-R,以监测海况和海上目标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Geoscience and Remote Sensing
IEEE Transactions on Geoscience and Remote Sensing 工程技术-地球化学与地球物理
CiteScore
11.50
自引率
28.00%
发文量
1912
审稿时长
4.0 months
期刊介绍: IEEE Transactions on Geoscience and Remote Sensing (TGRS) is a monthly publication that focuses on the theory, concepts, and techniques of science and engineering as applied to sensing the land, oceans, atmosphere, and space; and the processing, interpretation, and dissemination of this information.
期刊最新文献
Chinese Low-latitude Atmosphere and Ionosphere Radar (CLAIR) of Meridian Project II: System Description and Initial Observation Results Dynamic Token Augmentation Mamba for Cross-Scene Classification of Hyperspectral Image Third-order cumulants based on quadratic frequency coupling constraints for parameter extraction of magnetic resonance sounding signals CR-former: Single Image Cloud Removal with Focused Taylor Attention CPMF: An integrated technology for generating 30-m, all-weather land surface temperature by Coupling Physical model, Machine learning and spatiotemporal Fusion model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1