Granular Computing for Machine Learning: Pursuing New Development Horizons

IF 9.4 1区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS IEEE Transactions on Cybernetics Pub Date : 2024-11-18 DOI:10.1109/TCYB.2024.3487934
Witold Pedrycz
{"title":"Granular Computing for Machine Learning: Pursuing New Development Horizons","authors":"Witold Pedrycz","doi":"10.1109/TCYB.2024.3487934","DOIUrl":null,"url":null,"abstract":"Undoubtedly, machine learning (ML) has demonstrated a wealth of far-reaching successes present both at the level of fundamental developments, design methodologies and numerous application areas, quite often encountered in domains requiring a high level of autonomous behavior. Over the passage of time, there are growing challenges of privacy and security, interpretability, explainability, confidence (credibility), and computational sustainability, among others. In this study, we advocate that these quests could be addressed by casting them both conceptually and algorithmically in the unified environment augmented by the principles of granular computing. It is demonstrated that the level of abstraction, delivered by granular computing plays a pivotal role in the interpretation by quantifying the level of credibility of ML constructs. The study also highlights the principles of granular computing and elaborates on its landscape. The original idea of a comprehensive and unified framework of data-knowledge environment of ML is introduced along with a detailed discussion on how data and knowledge are used in a seamless fashion by invoking granular embedding and producing relevant loss functions. Key categories of knowledge-data integration realized at the levels of data and model (involving symbolic/qualitative models and physics-oriented models) and investigated.","PeriodicalId":13112,"journal":{"name":"IEEE Transactions on Cybernetics","volume":"55 1","pages":"460-471"},"PeriodicalIF":9.4000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Cybernetics","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10756208/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Undoubtedly, machine learning (ML) has demonstrated a wealth of far-reaching successes present both at the level of fundamental developments, design methodologies and numerous application areas, quite often encountered in domains requiring a high level of autonomous behavior. Over the passage of time, there are growing challenges of privacy and security, interpretability, explainability, confidence (credibility), and computational sustainability, among others. In this study, we advocate that these quests could be addressed by casting them both conceptually and algorithmically in the unified environment augmented by the principles of granular computing. It is demonstrated that the level of abstraction, delivered by granular computing plays a pivotal role in the interpretation by quantifying the level of credibility of ML constructs. The study also highlights the principles of granular computing and elaborates on its landscape. The original idea of a comprehensive and unified framework of data-knowledge environment of ML is introduced along with a detailed discussion on how data and knowledge are used in a seamless fashion by invoking granular embedding and producing relevant loss functions. Key categories of knowledge-data integration realized at the levels of data and model (involving symbolic/qualitative models and physics-oriented models) and investigated.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
机器学习的粒度计算:追求新的发展视野
毫无疑问,机器学习(ML)在基础开发、设计方法和众多应用领域都取得了深远的成功,在需要高度自治行为的领域中经常遇到。随着时间的推移,隐私和安全、可解释性、可解释性、信心(可信度)和计算可持续性等方面的挑战越来越多。在这项研究中,我们主张这些任务可以通过在概念上和算法上在颗粒计算原理增强的统一环境中进行铸造来解决。研究表明,通过量化ML结构的可信度水平,颗粒计算提供的抽象水平在解释中起着关键作用。该研究还强调了颗粒计算的原理,并详细阐述了其前景。介绍了一个全面统一的ML数据-知识环境框架的最初想法,并详细讨论了如何通过调用颗粒嵌入和产生相关损失函数来无缝地使用数据和知识。在数据和模型层面实现的知识数据集成的关键类别(包括符号/定性模型和面向物理的模型)并进行了研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Cybernetics
IEEE Transactions on Cybernetics COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-COMPUTER SCIENCE, CYBERNETICS
CiteScore
25.40
自引率
11.00%
发文量
1869
期刊介绍: The scope of the IEEE Transactions on Cybernetics includes computational approaches to the field of cybernetics. Specifically, the transactions welcomes papers on communication and control across machines or machine, human, and organizations. The scope includes such areas as computational intelligence, computer vision, neural networks, genetic algorithms, machine learning, fuzzy systems, cognitive systems, decision making, and robotics, to the extent that they contribute to the theme of cybernetics or demonstrate an application of cybernetics principles.
期刊最新文献
Event-/Self-Triggered Adaptive Optimal Consensus Control for Nonlinear Multiagent System With Unknown Dynamics and Disturbances Two-Stage Cooperation Multiobjective Evolutionary Algorithm Guided by Constraint-Sensitive Variables Relaxed Optimal Control With Self-Learning Horizon for Discrete-Time Stochastic Dynamics Dynamic Graph Representation Learning for Spatio-Temporal Neuroimaging Analysis Table of Contents
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1