Metal-organic framework derived Co@N/C with enhanced oxygen reduction reaction in direct borohydride fuel cells

IF 4.1 2区 工程技术 Q2 ENGINEERING, CHEMICAL Chemical Engineering Science Pub Date : 2024-11-19 DOI:10.1016/j.ces.2024.120953
Lianke Zhang, Lei Zhang, Dandan Li, Haiying Qin, Hualiang Ni, Hongzhong Chi, Junjing He, Yan He
{"title":"Metal-organic framework derived Co@N/C with enhanced oxygen reduction reaction in direct borohydride fuel cells","authors":"Lianke Zhang, Lei Zhang, Dandan Li, Haiying Qin, Hualiang Ni, Hongzhong Chi, Junjing He, Yan He","doi":"10.1016/j.ces.2024.120953","DOIUrl":null,"url":null,"abstract":"Developing efficient and durable non-precious metals catalysts is crucial for fuel cells. Herein, we synthesize nitrogen-doped carbon-encapsulated metal cobalt nanoparticles with core–shell structure (Co@N/C-Joule) catalyst by carbothermal shock (CTS) pyrolysis of ZIF-67 under argon atmosphere. The Co@N/C-Joule exhibits superior catalytic activity and stability for the oxygen reduction reaction (ORR) in alkaline electrolyte. Co@N/C-Joule demonstrates a half-wave potential of 0.84 V (<em>vs.</em> the reversible hydrogen electrode, RHE). The Co@N/C-Joule also exhibits superior stability, with only a 4 mV negative shift after 30,000 cyclic voltammetry cycles. The direct borohydride fuel cells using the Co@N/C-Joule cathode achieves a maximum power density of 389 mW cm<sup>−2</sup> at 60°C. The rapid heating and cooling rate of CTS enables the production of small-sized Co@N/C nanocatalysts with ultra-thin nitrogen-doped graphite layer coating on Co particles, thereby increasing the surface density of active sites on Co nanoparticles and Co-N sites, which leads to improved ORR performance.","PeriodicalId":271,"journal":{"name":"Chemical Engineering Science","volume":"6 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.ces.2024.120953","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Developing efficient and durable non-precious metals catalysts is crucial for fuel cells. Herein, we synthesize nitrogen-doped carbon-encapsulated metal cobalt nanoparticles with core–shell structure (Co@N/C-Joule) catalyst by carbothermal shock (CTS) pyrolysis of ZIF-67 under argon atmosphere. The Co@N/C-Joule exhibits superior catalytic activity and stability for the oxygen reduction reaction (ORR) in alkaline electrolyte. Co@N/C-Joule demonstrates a half-wave potential of 0.84 V (vs. the reversible hydrogen electrode, RHE). The Co@N/C-Joule also exhibits superior stability, with only a 4 mV negative shift after 30,000 cyclic voltammetry cycles. The direct borohydride fuel cells using the Co@N/C-Joule cathode achieves a maximum power density of 389 mW cm−2 at 60°C. The rapid heating and cooling rate of CTS enables the production of small-sized Co@N/C nanocatalysts with ultra-thin nitrogen-doped graphite layer coating on Co particles, thereby increasing the surface density of active sites on Co nanoparticles and Co-N sites, which leads to improved ORR performance.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
金属有机框架衍生的 Co@N/C 在直接硼氢化燃料电池中可增强氧还原反应
开发高效耐用的非贵金属催化剂对燃料电池至关重要。在此,我们通过在氩气环境下对 ZIF-67 进行碳热冲击(CTS)热解,合成了具有核壳结构的掺氮碳包封金属钴纳米颗粒(Co@N/C-Joule)催化剂。Co@N/C-Joule 在碱性电解质中的氧还原反应(ORR)中表现出卓越的催化活性和稳定性。Co@N/C-Joule 的半波电位为 0.84 V(与可逆氢电极相比)。此外,Co@N/C-Joule 还表现出卓越的稳定性,在 30,000 个循环伏安法周期后仅出现 4 mV 的负偏移。使用 Co@N/C-Joule 阴极的直接硼氢化燃料电池在 60°C 温度下可达到 389 mW cm-2 的最大功率密度。CTS 的快速加热和冷却速度使 Co@N/C 纳米催化剂的生产成为可能,这种催化剂在 Co 颗粒上具有超薄的掺氮石墨层涂层,从而增加了 Co 纳米颗粒和 Co-N 位点上活性位点的表面密度,从而提高了 ORR 性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chemical Engineering Science
Chemical Engineering Science 工程技术-工程:化工
CiteScore
7.50
自引率
8.50%
发文量
1025
审稿时长
50 days
期刊介绍: Chemical engineering enables the transformation of natural resources and energy into useful products for society. It draws on and applies natural sciences, mathematics and economics, and has developed fundamental engineering science that underpins the discipline. Chemical Engineering Science (CES) has been publishing papers on the fundamentals of chemical engineering since 1951. CES is the platform where the most significant advances in the discipline have ever since been published. Chemical Engineering Science has accompanied and sustained chemical engineering through its development into the vibrant and broad scientific discipline it is today.
期刊最新文献
Experimental study on the motion characteristics of non-spherical biomass particulate systems in a fluidization tube Synthesis of heterostructured microspheres for efficient removal of malachite green and basic fuchsine Redox-Animated Supra-Amphiphilic Host-Guest interfacial recognition for Reconfiguring Alginate-Derived hierarchical colloidal particles to enhance foliar pesticide deposition An effective strategy for coal-series kaolin utilization: Preparation of magnetic adsorbent for Congo red adsorption La-doped MnCo2O4.5 modified Ti/SnO2-Sb2O4/PbO2 anode for enhancing the electrochemical performance in zinc electrowinning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1