Sam Kobeissi, Nicholas N.A. Ling, Eric F. May, Michael L. Johns
{"title":"Measurements of intra-diffusion coefficients for gaseous binary mixtures","authors":"Sam Kobeissi, Nicholas N.A. Ling, Eric F. May, Michael L. Johns","doi":"10.1016/j.ces.2024.120952","DOIUrl":null,"url":null,"abstract":"Benchtop pulsed field gradient (PFG) nuclear magnetic resonance (NMR) measurements of the intra-diffusion coefficient (<span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msubsup is=\"true\"><mi is=\"true\">D</mi><mrow is=\"true\"><mi is=\"true\">i</mi></mrow><mrow is=\"true\"><mo is=\"true\">&#x2217;</mo></mrow></msubsup></math>' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.663ex\" role=\"img\" style=\"vertical-align: -0.928ex;\" viewbox=\"0 -747.2 1282.4 1146.6\" width=\"2.979ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMATHI-44\"></use></g><g is=\"true\" transform=\"translate(828,320)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-2217\"></use></g></g><g is=\"true\" transform=\"translate(828,-304)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMATHI-69\"></use></g></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msubsup is=\"true\"><mi is=\"true\">D</mi><mrow is=\"true\"><mi is=\"true\">i</mi></mrow><mrow is=\"true\"><mo is=\"true\">∗</mo></mrow></msubsup></math></span></span><script type=\"math/mml\"><math><msubsup is=\"true\"><mi is=\"true\">D</mi><mrow is=\"true\"><mi is=\"true\">i</mi></mrow><mrow is=\"true\"><mo is=\"true\">∗</mo></mrow></msubsup></math></script></span>) for binary gaseous mixtures are presented as a function of composition, for temperature and pressure conditions broadly relevant to industrial and geological processes. This required the design, construction, and application of a novel NMR-compatible sapphire sample cell. Measurements were performed for methane–nitrogen, methane-helium, and methane-hydrogen mixtures, with compositions down to 0.5 mol% methane that were resolvable in a reasonable time frame. Consequently, extrapolation to infinite dilution was enabled, with the resultant values of <span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msubsup is=\"true\"><mi is=\"true\">D</mi><mrow is=\"true\"><mi is=\"true\">i</mi></mrow><mrow is=\"true\"><mo is=\"true\">&#x2217;</mo></mrow></msubsup></math>' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.663ex\" role=\"img\" style=\"vertical-align: -0.928ex;\" viewbox=\"0 -747.2 1282.4 1146.6\" width=\"2.979ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMATHI-44\"></use></g><g is=\"true\" transform=\"translate(828,320)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-2217\"></use></g></g><g is=\"true\" transform=\"translate(828,-304)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMATHI-69\"></use></g></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msubsup is=\"true\"><mi is=\"true\">D</mi><mrow is=\"true\"><mi is=\"true\">i</mi></mrow><mrow is=\"true\"><mo is=\"true\">∗</mo></mrow></msubsup></math></span></span><script type=\"math/mml\"><math><msubsup is=\"true\"><mi is=\"true\">D</mi><mrow is=\"true\"><mi is=\"true\">i</mi></mrow><mrow is=\"true\"><mo is=\"true\">∗</mo></mrow></msubsup></math></script></span>(<em>x</em><sub>i</sub> = 0) compared with relevant mutual diffusion coefficients (<em>D</em><sub>12</sub>) from both literature and as estimated using kinetic theory (Thorne-Enskog equation). In the case of methane-helium mixtures, agreement was overwhelmingly within experimental uncertainty across the temperature–pressure parameter space explored, whereas in the case of methane–nitrogen, the determined values of <span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msubsup is=\"true\"><mi is=\"true\">D</mi><mrow is=\"true\"><mi is=\"true\">i</mi></mrow><mrow is=\"true\"><mo is=\"true\">&#x2217;</mo></mrow></msubsup></math>' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.663ex\" role=\"img\" style=\"vertical-align: -0.928ex;\" viewbox=\"0 -747.2 1282.4 1146.6\" width=\"2.979ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMATHI-44\"></use></g><g is=\"true\" transform=\"translate(828,320)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-2217\"></use></g></g><g is=\"true\" transform=\"translate(828,-304)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMATHI-69\"></use></g></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msubsup is=\"true\"><mi is=\"true\">D</mi><mrow is=\"true\"><mi is=\"true\">i</mi></mrow><mrow is=\"true\"><mo is=\"true\">∗</mo></mrow></msubsup></math></span></span><script type=\"math/mml\"><math><msubsup is=\"true\"><mi is=\"true\">D</mi><mrow is=\"true\"><mi is=\"true\">i</mi></mrow><mrow is=\"true\"><mo is=\"true\">∗</mo></mrow></msubsup></math></script></span>(<em>x</em><sub>i</sub> = 0) were slightly larger than <em>D</em><sub>12</sub> data as predicted by kinetic theory. In the case of methane-hydrogen mixtures, simultaneous measurements of both methane and hydrogen intra-diffusion coefficients were possible. Agreement between <span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msubsup is=\"true\"><mi is=\"true\">D</mi><mrow is=\"true\"><mi is=\"true\">i</mi></mrow><mrow is=\"true\"><mo is=\"true\">&#x2217;</mo></mrow></msubsup></math>' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.663ex\" role=\"img\" style=\"vertical-align: -0.928ex;\" viewbox=\"0 -747.2 1282.4 1146.6\" width=\"2.979ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMATHI-44\"></use></g><g is=\"true\" transform=\"translate(828,320)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-2217\"></use></g></g><g is=\"true\" transform=\"translate(828,-304)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMATHI-69\"></use></g></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msubsup is=\"true\"><mi is=\"true\">D</mi><mrow is=\"true\"><mi is=\"true\">i</mi></mrow><mrow is=\"true\"><mo is=\"true\">∗</mo></mrow></msubsup></math></span></span><script type=\"math/mml\"><math><msubsup is=\"true\"><mi is=\"true\">D</mi><mrow is=\"true\"><mi is=\"true\">i</mi></mrow><mrow is=\"true\"><mo is=\"true\">∗</mo></mrow></msubsup></math></script></span>(<em>x</em><sub>i</sub> = 0) and kinetic theory was comfortably within experimental uncertainty in the case of hydrogen but deviated in the case of methane.","PeriodicalId":271,"journal":{"name":"Chemical Engineering Science","volume":"18 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.ces.2024.120952","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Benchtop pulsed field gradient (PFG) nuclear magnetic resonance (NMR) measurements of the intra-diffusion coefficient () for binary gaseous mixtures are presented as a function of composition, for temperature and pressure conditions broadly relevant to industrial and geological processes. This required the design, construction, and application of a novel NMR-compatible sapphire sample cell. Measurements were performed for methane–nitrogen, methane-helium, and methane-hydrogen mixtures, with compositions down to 0.5 mol% methane that were resolvable in a reasonable time frame. Consequently, extrapolation to infinite dilution was enabled, with the resultant values of (xi = 0) compared with relevant mutual diffusion coefficients (D12) from both literature and as estimated using kinetic theory (Thorne-Enskog equation). In the case of methane-helium mixtures, agreement was overwhelmingly within experimental uncertainty across the temperature–pressure parameter space explored, whereas in the case of methane–nitrogen, the determined values of (xi = 0) were slightly larger than D12 data as predicted by kinetic theory. In the case of methane-hydrogen mixtures, simultaneous measurements of both methane and hydrogen intra-diffusion coefficients were possible. Agreement between (xi = 0) and kinetic theory was comfortably within experimental uncertainty in the case of hydrogen but deviated in the case of methane.
期刊介绍:
Chemical engineering enables the transformation of natural resources and energy into useful products for society. It draws on and applies natural sciences, mathematics and economics, and has developed fundamental engineering science that underpins the discipline.
Chemical Engineering Science (CES) has been publishing papers on the fundamentals of chemical engineering since 1951. CES is the platform where the most significant advances in the discipline have ever since been published. Chemical Engineering Science has accompanied and sustained chemical engineering through its development into the vibrant and broad scientific discipline it is today.